Name (Last, First):

Dror Bar-Natan: Classes: 2014-15: MAT 475 Problem Solving Seminar:

http://drorbn.net/15-475

Student ID:

Quiz 8 on March 10, 2015: "argue by contradiction" and the Pigeonhole Principle. You have 30 minutes to solve the two problems below. Please write on both sides of the page. Good Luck!

Marking Comment. At least for now, I have decided to simplify the management of this course and mark the quizzes myself, though at a delay of one week, in symbolic acknowledgement of the ongoing TA strike.

Problem 1 (Larson's 2.6.10, expanded).

1. (4 points) Let *X* be any real number. Prove that among the numbers

$$X, 2X, \ldots, (n-1)X$$

there is at least one that differs from an integer by at most 1/n.

2. (4 points) Let α be an irrational number. Prove that the set $\{\{n\alpha\}: n \in \mathbb{Z}\}$ is dense in the unit interval [0, 1], where for a real number x, $\{x\}$ denotes its "fractional part" — the difference between x and the largest integer $\lfloor x \rfloor$ smaller or equal to x.

Problem 2 (5 points, Larson's 1.9.5, abbreviated). A set *S* of rational numbers is closed under addition and multiplication, and it is given that for every $r \in \mathbb{Q}$ exactly one of the following is true: $r \in S$, $-r \in S$, r = 0. Prove that *S* is the set of all positive rational numbers.