Name (Last, First):

Dror Bar-Natan: Classes: 2014-15: MAT 475 Problem Solving Seminar:

http://drorbn.net/15-475

Student ID:

Quiz 7 on March 3, 2015: "Divide into Cases", "Work Backwards", the Pigeonhole Principle. You have 30 minutes to solve the two problems below. Please write on both sides of the page. Good Luck!

Problem 1 (Larson's 2.5.13).

• (4 points) A derangement is a permutation $\sigma \in S_n$ such that for every $i, \sigma i \neq i$. Let g_n be the number of derangements in S_n . Show that

$$g_1 = 0,$$
 $g_2 = 1,$ $g_n = (n-1)(g_{n-1} + g_{n-2}).$

Hint. A derangement interchanges 1 with some other element, or not.

• (4 points) Let f_n be the number of permutations in S_n that have exactly one fixed point (namely, exactly one *i* such that $\sigma i = i$). Show that $|f_n - g_n| = 1$.

Problem 2 (Larson's 2.6.1, 5 points). Given n + 1 positive integers, none of which exceeds 2n, show that one of these integers divides another of these integers.