\qquad
Dror Bar-Natan: Classes: 2014-15: MAT 475 Problem Solving Seminar:
Quiz 7 on March 3, 2015: "Divide into Cases", "Work Backwards", the Pigeonhole Principle. You have 30 minutes to solve the two problems below. Please write on both sides of the page.

Good Luck!
Problem 1 (Larson's 2.5.13).

- (4 points) A derangement is a permutation $\sigma \in S_{n}$ such that for every $i, \sigma i \neq i$. Let g_{n} be the number of derangements in S_{n}. Show that

$$
g_{1}=0, \quad g_{2}=1, \quad g_{n}=(n-1)\left(g_{n-1}+g_{n-2}\right)
$$

Hint. A derangement interchanges 1 with some other element, or not.

- (4 points) Let f_{n} be the number of permutations in S_{n} that have exactly one fixed point (namely, exactly one i such that $\sigma i=i$). Show that $\left|f_{n}-g_{n}\right|=1$.

Problem 2 (Larson's 2.6.1, 5 points). Given $n+1$ positive integers, none of which exceeds $2 n$, show that one of these integers divides another of these integers.

