\qquad
Dror Bar-Natan: Classes: 2014-15: MAT 475 Problem Solving Seminar:
Quiz 3 "Formulate an Equivalent Problem", January 27, 2015. You have 25 minutes to solve as much as you can of the following problems. Please write on both sides of the page.

Good Luck!
Problem 1. In how many ways can a natural number n be written as a sum of k non-negative integers, taking order into account? For example, if $n=2$ and $k=3$, there are 6 ways: $2=2+0+0=0+2+0=0+0+2=0+1+1=1+0+1=1+1+0$.
Problem 2 (Larson's 1.3.15). Use a counting argument to prove that for integers $0<r \leq n$,

$$
\binom{r}{r}+\binom{r+1}{r}+\binom{r+2}{r}+\cdots+\binom{n}{r}=\binom{n+1}{r+1} .
$$

Problem 3 (no credit, yet the best solutions will be advertised). What is your favourite "Formulate an Equivalent Problem" problem?
Problem 3 solution by Alessandra:

$$
\begin{aligned}
& \text { 3. Show that } 1+x+x^{2}+x^{5}+x^{6}+x^{77} \text { has no routs greater than: } \\
& \text { is substitute } y+1=x \text { into } x \text {, and then it appears that } \\
& \text { all coefficients are positive, so the equation will never equal } 0 \text {, } \\
& \text { anol thus the original equation will alsonever equal zero. } \\
& \therefore \text { nu roots greater than 1. }
\end{aligned}
$$

Problem 3 solution by Yizhou:

$$
\begin{gathered}
\text { Problem } 3 \text { shake heme problem } \\
\text { forb people, }
\end{gathered}
$$

$$
\text { there are at least } 3 \text { strong whom }
$$

each two people have shaken hand of
no one has shaken band with another

the result is equivalent to "there must be a red
or a blue triangle"

$$
\text { for } A, A B, A \subset A D, A E, A F ?
$$

$$
\text { at least }\left[\frac{5}{2}\right]+1=3 \text { of them are same colon }
$$

$$
\text { floG } A B, A C, A D \text { red }
$$

$$
\begin{array}{r}
\text { If at least one of } B C B D \text { or } C D \text { red, wed } \Delta \text {. dane } \\
\text { Otherwise, } B C, B D, C D \text { all blue } \Rightarrow \triangle B C D \text { blue } \\
\text { done. }
\end{array}
$$

