
http://drorbn.net/?title=15-344

Dror Bar-Natan: Classes: 2015-16: MAT 344 Combinatorics: Dijkstra’s Algorithm
Problem. Given a connected network G = (V, E); w : E →
R≥0 and two vertices a, z ∈ V , find the w-shortest path from
a to z.

Dijkstra’s Algorithm. Throughout, we’ll have a decom-
position V = C t U of V into two disjoint sets, C for
Confirmed / Confident and U for Unknown, a function
m : V → R≥0 ∪ {∞} for “min so far”, and a partially defined
function b : V → V for “backtracking”. As we run, the set
C will grow and the set U will shrink. We stop when z ∈ C,
and then m(z) will be “the time to z” and (z, b(z), b(b(z)), . . .)
will be the path from a to z, going backwards.
Initialization. Set C B {a}, U B V \ {a}, m(a) B 0, and
b(a) B ,. Also, if x is adjacent to a set m(x) B w(ax)
and b(x) B a, and for all other x set m(x) B ∞ and
b(x) = undef.
Iteration. Let x0 be where m attains its minimum on U
(breaking ties arbitrarily), move x0 from U to C, and for
each neighbor y ∈ U of x0, if m(x0) + w(x0y) ≥ m(y), do
nothing. Else set m(y) B m(x0) + w(x0y) and b(y) B x0.

Example. Solve the shortest path problem for the network:
b

c

d

e

z

4

2

1

5

8

10

2

6

3
a

Initialization / Step 0. Notation: (C/U,m, b)
b : (U, 4, a)

c : (U, 2, a)

d : (U,∞, ?)

e : (U,∞, ?)

z : (U,∞, ?)

4

2

1

5

8

10

2

6

3
a : (C, 0,,)

Step 1. x0 = c and
b : (U, 3, c)

c : (C, 2, a)

d : (U, 10, c)

e : (U, 12, c)

z : (U,∞, ?)

4

2

1

5

8

10

2

6

3
a : (C, 0,,)

Step 2. x0 = b and
b : (C, 3, c)

c : (C, 2, a)

d : (U, 8, b)

e : (U, 12, c)

z : (U,∞, ?)

4

2

1

5

8

10

2

6

3
a : (C, 0,,)

Step 3. x0 = d and
b : (C, 3, c)

c : (C, 2, a)

d : (C, 8, b)

e : (U, 10, d)

z : (U, 14, d)

4

2

1

5

8

10

2

6

3
a : (C, 0,,)

Step 4. x0 = e and
b : (C, 3, c)

c : (C, 2, a)

d : (C, 8, b)

e : (C, 10, d)

z : (U, 13, e)

4

2

1

5

8

10

2

6

3
a : (C, 0,,)

Step 5, end. x0 = z so we are done; the minimal path
length is m(z) = 13, and the path, going backwards, is

z
b
→ e

b
→ d

b
→ b

b
→ c

b
→ a.

Proof that the algorithm works. The inductive assertion
is “after each step, for each x ∈ C the minimal path length
to x is m(x) and the stop before x is b(x); for each x ∈ U for
which m(x) < ∞, the minimal path length where all stops
but the last are in C is m(x) and the stop before x (in such a
path) is b(x)”.

Efficiency estimate. For concreteness, take |V | =
1, 000, 000 and assume that the maximal degree of a ver-
tex is 7.
Very naively, the search for x0 is fast and we need about
7, 000, 000 operations in total.
Less naively, the search for x0 takes about 500, 000 opera-
tions, so our total is 1, 000, 000 × (7 + 500, 000).
Cleverly, instead of a search, we maintain an ordered ta-
ble of the values of m. Updating the table takes about
log2(500, 000) ∼ 20 operations, so the total number of oper-
ations required is about 1, 000, 000× (7+ 7× 20), a feasible
number.

Finding a minimal spanning tree.
Kruskal’s Algorithm. Start with T = ∅; repeatedly add to
T the cheapest edge that does not form a circuit with edges
already in T .
Prim’s Algorithm. Start with T = ∅; repeatedly add to T
the cheapest edge that connects T and the complement T c

of T .

Read Along. Section 4.1 and 4.2, and all of section 5.
HW5 will be on the web by midnight tonight, October 29.
No Dror office hours on Tuesday November 3, sorry.

http://drorbn.net/?title=15-344
http://www.math.toronto.edu/~drorbn/
http://www.math.toronto.edu/~drorbn/classes/
http://www.math.toronto.edu/~drorbn/classes/#1516
http://drorbn.net/?title=15-344

