Problem. Given a connected network G = (V, E); $w: E \rightarrow \mathbb{R}_{\geq 0}$ and two vertices $a, z \in V$, find the *w*-shortest path from *a* to *z*.

Dijkstra's Algorithm. Throughout, we'll have a decomposition $V = C \sqcup U$ of V into two disjoint sets, C for Confirmed / Confident and U for Unknown, a function $m: V \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ for "min so far", and a partially defined function $b: V \to V$ for "backtracking". As we run, the set C will grow and the set U will shrink. We stop when $z \in C$, and then m(z) will be "the time to z" and $(z, b(z), b(b(z)), \ldots)$ will be the path from a to z, going backwards.

Initialization. Set $C := \{a\}$, $U := V \setminus \{a\}$, m(a) := 0, and $b(a) := \odot$. Also, if x is adjacent to a set m(x) := w(ax) and b(x) := a, and for all other x set $m(x) := \infty$ and b(x) =undef.

Iteration. Let x_0 be where *m* attains its minimum on *U* (breaking ties arbitrarily), move x_0 from *U* to *C*, and for each neighbor $y \in U$ of x_0 , if $m(x_0) + w(x_0y) \ge m(y)$, do nothing. Else set $m(y) \coloneqq m(x_0) + w(x_0y)$ and $b(y) \coloneqq x_0$.

Example. Solve the shortest path problem for the network:

Step 5, end. $x_0 = z$ so we are done; the minimal path length is m(z) = 13, and the path, going backwards, is $z \xrightarrow{b} e \xrightarrow{b} d \xrightarrow{b} b \xrightarrow{b} c \xrightarrow{b} a$.

Proof that the algorithm works. The inductive assertion is "after each step, for each $x \in C$ the minimal path length to *x* is m(x) and the stop before *x* is b(x); for each $x \in U$ for which $m(x) < \infty$, the minimal path length where all stops but the last are in *C* is m(x) and the stop before *x* (in such a path) is b(x)".

Efficiency estimate. For concreteness, take |V| = 1,000,000 and assume that the maximal degree of a vertex is 7.

Very naively, the search for x_0 is fast and we need about 7,000,000 operations in total.

Less naively, the search for x_0 takes about 500,000 operations, so our total is 1,000,000 × (7 + 500,000).

Cleverly, instead of a search, we maintain an ordered table of the values of *m*. Updating the table takes about $\log_2(500,000) \sim 20$ operations, so the total number of operations required is about 1,000,000 × (7 + 7 × 20), a feasible number.

Finding a minimal spanning tree.

Kruskal's Algorithm. Start with $T = \emptyset$; repeatedly add to *T* the cheapest edge that does not form a circuit with edges already in *T*.

Prim's Algorithm. Start with $T = \emptyset$; repeatedly add to T the cheapest edge that connects T and the complement T^c of T.

Read Along. Section 4.1 and 4.2, and all of section 5. **HW5** will be on the web by midnight tonight, October 29. **No Dror office hours** on Tuesday November 3, sorry.