office hour today $130-2 \frac{30}{30}$.

$\operatorname{rank} T=\operatorname{rank} P T Q \quad \operatorname{rank}[T]_{\beta}^{\gamma}=\operatorname{rank} T$
$\operatorname{rank} A=\operatorname{vank} P A Q$ whenevt $P \in M_{m \times m} \& Q \in M_{n \times n}$ are invertible.

Q! Which P, Q? Q2 What's simpler?
Ans 2 $\operatorname{rank}\left(\begin{array}{cccc}1 & l_{1} & 0 \\ 1 & 0 & 0 \\ 0 & & 0\end{array}\right)=\operatorname{rank}\left(\begin{array}{c|c}I_{k} & 0 \\ \hline 0 & 0\end{array}\right)=k$
Ans 1 Examples of "good" P / Q : "elementary matrices

1. Fntorchanging rous/colums.
$E_{i, j}^{\prime} \quad\left(\frac{r_{i} \leftrightarrow r_{j}^{\prime}}{r_{i} *=c_{r}}\right) \circ r\left(c_{1} \leftrightarrow c_{v}\right)$
2. Multiplying r / c by a scalar. $\quad E_{i, c}^{2} \quad\left(\xrightarrow{r_{i} *=c_{3}}\right)$ or $\left(c_{i} c_{j}\right)$
3. Adding a multiple of one rice to another $E_{i, 0, j}^{3} \quad\left(r_{i}+=C r_{i}\right)$ or
"row/column reduction"
The Every matrix A can be rle-reduced to a ${ }^{11}\left(\begin{array}{lll}1 & & \\ 1 & 1 & \\ & & \\ & & \\ & & j\end{array}\right) \quad C_{j}+=C \cdot C_{i}$ block matrix of the form $\left(\begin{array}{cc}I_{k} & 0 \\ 0 & 0\end{array}\right)$.

Problem. Find the rank the matrix

$$
A=\left(\begin{array}{ccccc}
0 & 2 & 4 & 2 & 2 \\
4 & 4 & 4 & 8 & 0 \\
8 & 2 & 0 & 10 & 2 \\
6 & 3 & 2 & 9 & 1
\end{array}\right)
$$

Solution. Using (invertible!) row/column operations we aim to bring A to look as close as possible to an identity matrix:

Thus the rank of our matrix is 3 .
http://drorbn.net/index.php?title=12-240/Classnotes for Tuesday November 8
claim $\operatorname{rank} A=\operatorname{rank}\left(A^{T}\right)^{B T}-B$, the manning of AT in the world of lit. is quite intriente.
$\operatorname{daim} \operatorname{rank} A=\operatorname{dim}(\operatorname{col}-\operatorname{spnce}(A))=\operatorname{din}($ row-spuce $(A))$
Suppose you could row reduce A to I. Find A^{-1}.

$$
E_{4} E_{3} E_{2} E_{1} A=I \quad \Rightarrow A^{-1}=E_{4} E_{3} E_{2} E_{1}
$$

* The hard way.
* the easy way: r.r. (A|I)

$$
\text { Example: Compote }\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)^{-1} \text {. }
$$

How far can you go with row reduction? ($\left.\begin{array}{l}A N \text { then with col? } \\ B T y, n \\ \text { this is an } \\ \text { and }\end{array}\right)$

1. The first non-zuro entry in each row ("the prot) (ansocichivivity) is al.
2. In the column of a pivot, all else is 0 "reduce row coition [scan from lett to right, to prevent interfwence] form"
3. Going down the rows, the pivots are further \& further to the right.
Example:

$$
\left.\left[\begin{array}{cccccc}
1 & 0 & 2 & 9 & 0 & e \\
0 & 1 & -3 & 7 & 0 & \pi \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
i & 1 & 1 & 0 & 0
\end{array}\right]\right\} \begin{aligned}
& \text { non-zero pro rovs/inal } \\
& \text { non-rivotl } \\
& \text { rows } \\
& \text { rows. }
\end{aligned}
$$

pivotal col's

$$
\begin{aligned}
& \text { - non-pivital } \\
& \text { col's }
\end{aligned}
$$

..... And now with col. ops., can reach $\left(\begin{array}{l|l}I_{t} & 0 \\ \hline 0 & 0\end{array}\right)$
clam The rank of a r.re.f matrix is the number of pivots/ non-zero rows in it.
Claim If A is invertible, its r.r.e.f. is I

