240Algebral-141105 Hours 25-26: Matrices and matrix algebra

Today. Matrices \& matrix algebra.
Riddle along: A game: Player A writes the numbers 1-18 on the faces of three blank dice, to her liking. Player B takes one of the 3 dice. Player B takes one of the remaining two, and throws away the third. Player A and B then play 1,000 rounds of "dice war" with the dice they hold. Whom would you rather be, player A or player B?

Reminders.

$$
\begin{aligned}
& \left.V_{/} / F \text {, basis } \beta=\left(V_{1} \ldots V_{n}\right) \quad W / F \text {, basic } \gamma=\omega_{1} \ldots w_{m}\right) \\
& \text { miry numbers, } \\
& \text { Abstract, geneal, coord-frae } \\
& \text { clociodenant } \\
& \text { mary to work with } \\
& \alpha\left(V_{1} W\right) \longrightarrow M_{m \times n}(F) \\
& T \longrightarrow[T]_{\beta}^{\gamma}=A \\
& A=\left(\begin{array}{c}
a_{11} \\
{\left[T V_{1 \gamma}\right.} \\
a_{m 1}
\end{array}\left|\left[T V_{2}\right]_{\gamma}\right| \ldots\left(\begin{array}{c}
a_{1 n} \\
\vdots \\
\left.T V_{n}\right]_{\gamma} \\
a_{m n}
\end{array}\right) \Leftrightarrow T V_{j}=\sum_{i=1}^{m} a_{k j} w_{k}\right. \\
& \text { Examples. } O \rightarrow(0), \quad I \rightarrow I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { 2. } D: P_{3}(\mathbb{R}) \longrightarrow P_{2}(\mathbb{B}) \text { differentiation } \\
& \text { 3. } T_{\alpha}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\
& \text { 4. } A: F^{n} \rightarrow F m
\end{aligned}
$$

Complete the proof that this is a vector space iso.

Definition $A \in M_{m \times n}, B \in M_{n \times p} \quad A \cdot B \in M_{m \times p}$ by $(A \cdot B)_{i k}=\sum_{j=1}^{n} A_{i j} B_{j k}$
$\left.\begin{array}{l}\text { Example }\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right) \cdot\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ -1 & 1\end{array}\right)=\ldots \\ \text { Tho }[T 0\end{array}\right)$
Example $2 \quad A \in M_{M_{x n}} \quad V \in M_{n \times 1}=E^{9}$

$$
A_{v} \in M_{m \times x}=F^{m}
$$

What we called $T_{A}(V)$ is really $A v$.
really Av.
Example 3 $T_{\beta} 0 T_{\alpha}=T_{\alpha+\beta}$ for rotations.
The good and the bad about "matrix Algebra":

4. Genembly, $A \cdot B \neq B \cdot A$,

$$
A(B+C)=A B+A C
$$ even whin beth make son so. target

Next goals: 1. Compute rank T/A. 2. Compute A^{-1} (Whin possible)
3. Solve systems of liner eqn's.

Proposition Given $V^{\prime} Q \xrightarrow{T} W \xrightarrow{\rho} W^{\prime}$ with invutible
$P \& Q$, rank $T=$ rank $P T Q$ [enough that Q surjective \& P injective]
PE

$$
\begin{aligned}
& V \xrightarrow{T} W \operatorname{sim}(T)=C, \quad b \sim \operatorname{sis}=\left(W_{i}=T\left(V_{i}\right)\right)_{i=1}^{r} \\
& Q \uparrow \quad W \\
& V^{\prime} \xrightarrow[P T Q]{W} W^{\prime} \operatorname{sim}\left(T^{\prime}\right)=C^{\prime} \quad \text { basis }=\left(W_{i}^{\prime}=P\left(W_{i}^{\prime}\right)\right)_{i=1}^{r}
\end{aligned}
$$

Nerd: 1. $W_{i}^{\prime} \in \operatorname{Mm} T^{\prime}$ j meaning $\exists v_{i}^{\prime} \in V^{\prime}$ sit. $w_{i}^{\prime}=T^{\prime} v_{i}^{\prime}$
2. W_{i}^{\prime} span C^{\prime}
3. wi $^{\prime}$ cure lin indep.

Def If $A \in M_{m \times n}$, let $\operatorname{rank} A:=\operatorname{rank} T_{A}$, where
T_{A} is the "standard" $T_{A}: F^{n} \longrightarrow F^{m}$
Comment I $\operatorname{rank}[T]_{\beta}^{\gamma}=\operatorname{rank} T \mathrm{PF}$.

$$
\begin{gathered}
V \xrightarrow{T} W \\
{\left[J_{B \beta} \downarrow\right.} \\
F^{n} \underset{T_{A}}{A} \underset{m}{~} \underset{m}{F}
\end{gathered}
$$

comment 2 rank $A=\operatorname{rank} P A Q$ whenever

Comment 2 rank $A=\operatorname{rankPAQ}$ whiner
$P \in M_{\text {mam }} \& Q \in M_{\text {nee }}$ are invertible.
1 '/ Look for P \& Q that will mike $P A Q$ "simpl ere than A.

