Rend Along 2,1-2.3

Two players alternate drawing cards from the above deck. The first player to have 3 cards that add up to 15 , wins. Would you like to be the first to move or the second?
(More on today's web, including a video link).
https://media.library.utoronto.ca/play.php?DJ6CPFxByy2J\&id=8503\&access=public https://cmc.math.ca/home/videos/game-of-15-and-isomorphisms/

HW6 on web.
Term test discussion return@ 9:5o.
Today: Linear transformations, abstractly.
Reminder. W,W/F $L: V \rightarrow W$ "linear transform mafön" if it preserves structure.

$$
L\left(\sum \alpha_{i} u_{i}\right)=\sum \alpha_{i} L\left(u_{i}\right)
$$

* L(V,W) j said is a vector space
* The composition of lit. is a lit.
* Not commutative 0
* A lot. is determined by its values on a bays, and these values are arbitrary. done line

Def $V \& W$ are isomorphic if Flit. $R: V \rightarrow W$ and $L: W \rightarrow V$ sit. $L \circ R=I_{V} \& R \circ L=I_{W}$
The If V,W are fid over F,
Then $\operatorname{dim} V=\operatorname{dim} W$ iff V is isomorphic to W.
Corollwy If $\operatorname{dim} V=n$ over $F_{\text {, }}$ V is isomorphic to F^{n}.

Two "mathematical structures are "isomorphic" if theri's a bijection ($1-1 k$ onto cores.) between their elements which presivis all relent relations.
Example plastic chess is iso. to ivory chess, but not to checkers.
Exanfll The game of 15 .

Pf of the \& of corollary tor get Fix a l.f. $T: V \rightarrow W$

Def $N(T)=\operatorname{ker} T=\{V: T V=0\} \quad$ "null spice", "kernel". $R(T)=$ in $T=\{T v: V \in V\}$ "range", "image"
Prop/DCG $N(T) \subset V$ is a subspace; nullity $(T):=\operatorname{dim} N(T)$
$R(T) \subset W$ is a subspace $j \operatorname{rank}(T):=\operatorname{dim} R(T)$
Examples $0, I_{v}, D: P_{n}(\mathbb{R}) \longrightarrow P_{n}(R)$
Thill" the dimension theorem", "the rank-nullity The"
Given $T: V \rightarrow W, \underset{m}{\operatorname{dim}} V=\underset{r}{\operatorname{rank}}(T)+\operatorname{nullity}_{n}(T)$
PE $\left(z_{i}\right)^{n}$, basis of $N(T)$, extend $t_{0}\left(z_{i}\right) \cup\left(v_{i}\right)$ a bass i of V,
 clam $W_{i}:=T\left(v_{i}\right)$ are \ln indy. in W pf... claim w_{i} span $R(T)$ pf...

