240Algebral-141022 Hours 19-20: Lagrange interpolation, linear tansformations

Rend Along $1,6,2,1$ HW5 on webs \& print.
Riddle Along

Today: Lagrange inter polition, linear transformations. Reminder $x_{1} \ldots . . x_{n+1} \in F$ distinct $y_{1, \ldots} y_{n+1} \in F$ any

$$
\begin{aligned}
& \exists \int_{0} p \in P_{n} \quad \text { s.t. } p\left(x_{i}\right)=y_{i} \sum_{0} \\
& \widetilde{p}_{i}(x)=\prod_{j \neq i}\left(x-x_{j}\right) \quad \widetilde{P}_{i}\left(x_{j}\right)= \begin{cases}0 & j \neq i \\
\neq 0 & i=j\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example: } x_{1,2,3}=0,1,3 \quad y_{1,2,3}=5,2,2 \\
& p(0)=5 \quad p(1)=2 \quad p(3)=2 \\
& \widetilde{P_{1}}=\left(x-x_{2}\right)\left(x-x_{3}\right)=(x-1)(x-3)=x^{2}-4 x+3 \\
& \widetilde{P_{2}}=\left(x-x_{1}\right)\left(x-x_{3}\right)=x^{2}-3 x \\
& \widetilde{P}_{3}=\left(x-x_{1}\right)\left(x-x_{2}\right)=x^{2}-x
\end{aligned}
$$

$$
p=x^{2}-4 x+5
$$

Sit $p_{i}(x)=\tilde{p}_{i}(x) / \tilde{p}_{i}\left(x_{i}\right)=\ldots$

$$
\frac{\text { start }}{\ln e}
$$

Then $* p(x):=\sum y_{i} p_{i}(x)$ satisfies $p\left(x_{i}\right)=y_{i}$

* $\beta=\left\{p_{1} \ldots p_{n+1}\right\}$ is lin. index.
* $\Rightarrow \beta$ is a basis
* Every $f \in P_{n}(\mathbb{R})$ can be expressed as a lin. comb. Of the p_{i} in a unique way.
* If $q(x)$ also satistis $q\left(x_{i}\right)=y_{i j}$, then $q(x)=P(x)$.
* Therefore the solution to our prollum is unique
* Aside: If $\mid f, P\left(x_{j}\right)=0$, then $p=0$
(so a non-zero polynomial of degree 1 has at most n roots.)
A word about "morphisms".
- "T:V->W is linear"
- Preserving 0.
- Claim on $\mathrm{cx}+\mathrm{y}$.
- Claim on differences and many-element sums.
- Example: $\mathrm{R}^{\wedge} 2->\mathrm{R}^{\wedge} 2$ by explicit formula.
- Example: Differentiation, multiplication by x.
- Example: Matrices and linear transformations on $\mathrm{F}^{\wedge} \mathrm{n}$.
- Example: Rotation (+ explicit formula).
- Added 2012: \calL(V,W) is a vector space. done
- Composition of linear trans is a linear trans.
- Composition is non-commutative. Example: differentiation and multiplication by x.
- A linear transformation is determined by its values on a basis, and these are arbitrary.
- "Isomorphism".

Def $V \& W$ are isomorphic if
Flit. T:V $\rightarrow W$ and $S: W \rightarrow V$
st. $S O T=I_{V} \& T_{0} S=I_{W}$
The If V,W are fid over F, Then $\operatorname{dim} V=\operatorname{dim} W$ iff V is isomorphic to W.
Corollary If $\operatorname{dim} V=n$ over $F_{\text {, }}$ V is isomorphic to F^{n}.

Two "mathematical structures are "isomorphic" if thesis a bijection ($1-1 k$ onto corves.) between their elements which presivis all relucent relations.
Example plastic chess is iso. to ivory chess, but not to checkers.
Example The game of 15 .

Pf of the \& of corollary
Fix a l.f. $T: V \rightarrow W$
Def $N(T)=\operatorname{ker} T=\{V: T V=0\}$ "null spice", "kernel".

$$
R(T)=\text { in } T=\{T V: V \in V\} \text { "range", "image" }
$$

Prop/DeG $N(T) \subset V$ is a subspace; nullity $(T):=\operatorname{dim} N(T)$
$R(T) \subset W$ is a subspace $j \operatorname{rank}(T):=\operatorname{dim} R(T)$
Examples $0, I_{v}, D: P_{n}(\mathbb{R}) \longrightarrow P_{n}(R)$
Thu !" the dimension theorem", "the rank-nullity Thy" Given $T \cdot|/ \rightarrow \ln \operatorname{dim}|=\operatorname{rank}(T)+$ mullite T)

PE $\left(z_{i}\right)^{n}$, basis of N(T), extend to $\left(z_{i}\right) \cup\left(r_{i}\right)$ a bays of V, (2) dame $W_{i}{ }^{\prime}=T\left(V_{i}\right)$ are \ln ind. in W CE.... chan w_{i} stan $R(T)$ if...

