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Dror Bar-Natan: Classes: 2014:
MAT 1350 — Algebraic Knot Theory:

The Fulton-MacPherson
Compactification

Let M be a manifold and let A be a finite set.

Definition 1. The open configuration space of A in M is Co
A(M) := {injections p : A→ M}.

Definition 2. The compactified configuration space of A in M is

CA(M) :=
∐

{A1,...,Ak}, A= ·∪Aα, Aα,∅

{(
pα ∈ M, cα ∈ C̃Aα(TpαM)

)k

α=1
: pα , pβ for α , β

}
where if V is a vector space and A is a singleton, C̃A(V) := {a point} and if |A| ≥ 2,

C̃A(V) B
∐

{A1,...,Ak}
A= ·∪Aα; k≥2, Aα,∅

{(
vα ∈ V, cα ∈ C̃Aα(TvαV)

)k

α=1
: vα , vβ for α , β

} /
translations and

dilations.

Definition 3. A “d-manifold with corners” is defined in the same way as a manifold, except coordinate patches look
like neighborhoods of 0 in Rd

+k B {x ∈ R
d : xi ≥ 0 for i ≤ k} instead of merely like neighberhoods of 0 in Rd or in

Rd
+ B {x ∈ R

d : x1 ≥ 0}.

Theorem 4. CA(M) ia a manifold with corners, and ∂CA(M) =
∐

A′⊂A, |A′ |≥2

{
(p, c) : p ∈ Co

A/A′(M), c ∈ C̃A′(TpA′M)
}
.

Theorem 5. (1) If M is compact, so is CA(M).
(2) If A is a singleton, CA(M) = M. If A is a doubleton, then CA(M) is isomorphic to M × M minus a tubular

neighborhood of the diagonal ∆ ⊂ M × M. That is, CA(M) = M × M − V(∆).
(3) If B ⊂ A then there is a natural map pB : CA(M) → CB(M). In particular, for every i, j ∈ A there is a

“direction map” φi j : CA(Rn)→ C{i, j}(Rn) ∼ S n−1.
(4) If f : M → N is a smooth embedding, then there’s a natural f? : CA(M)→ CA(N).

Now let D be a graph whose set of vertices is A. If two different vertices a0,1 ∈ A are connected by an edge in D,

we write a0
D
−−−a1. Likewise, if A0,1 ⊂ A are disjoint subsets, we write A0

D
−−−A1 if a0

D
−−−a1 for some a0 ∈ A0 and

a1 ∈ A1. For any subset A0 of A we let D(A0) be the restriction of D to A0.

Definition 6. The open configuration space of D in M is Co
D(M) B {p : A→ M : p(a0) , p(a1) whenever a0

D
−−−a1}.

Definition 7. The compactified configuration space of D in M is

CD(M) :=
∐

{A1,...,Ak}
A= ·∪Aα, Aα,∅

∀α D(Aα) connected

{(
pα ∈ M, cα ∈ C̃D(Aα)(TpαM)

)k

α=1
: pα , pβ whenever Aα

D
−−−Aβ

}

where if V is a vector space and A is a singleton, C̃D(V) := {a point}, and if |A| ≥ 2,

C̃D(V) :=
∐

{A1,...,Ak}
A= ·∪Aα; k≥2, Aα,∅
∀α D(Aα) connected

{(
vα ∈ V, cα ∈ C̃D(Aα)(TvαV)

)k

α=1
: vα , vβ whenever Aα

D
−−−Aβ

} / translations
and

dilations.

Theorem 8. The obvious parallel of the previous theorems holds.

Definition 9. Write S n = Rn ·∪{∞} and set C̄A(Rn) B
{
c ∈ CA ·∪{∞}(S n) : p∞(c) = ∞

}
.

Theorem 10. C̄A(Rn) is a compact manifold with corners and the direction maps φi j : C̄A(Rn) → S n−1 remain
well-defined.

Finally, given γ : S 1 → R3 and disjoint finite sets A and B, we set

Cγ
A,B B

{
(c′, c) : c′ ∈ CA(S 1), c ∈ C̄A∪B(R3), γ∗(c′) = pA(c)

}
(and similarly Cγ

D for appropriate graphs D). The obvious variants of the theorems remain valid.
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