Let *M* be a manifold and let *A* be a finite set.

Definition 1. The open configuration space of *A* in *M* is $C_A^o(M) := \{$ injections $p : A \to M \}$.

Definition 2. The compactified configuration space of A in M is

$$C_A(M) := \coprod_{\{A_1,\dots,A_k\}, \ A = \bigcup A_\alpha, \ A_\alpha \neq \emptyset} \left\{ \left(p_\alpha \in M, \ c_\alpha \in \tilde{C}_{A_\alpha}(T_{p_\alpha}M) \right)_{\alpha=1}^k : \ p_\alpha \neq p_\beta \text{ for } \alpha \neq \beta \right\}$$

where if *V* is a vector space and *A* is a singleton, $\tilde{C}_A(V) := \{a \text{ point}\}$ and if $|A| \ge 2$,

$$\tilde{C}_{A}(V) := \bigsqcup_{\substack{\{A_{1},\dots,A_{k}\}\\A=\cup A_{\alpha}; \ k \ge 2, \ A_{\alpha} \neq \emptyset}} \left\{ \left(v_{\alpha} \in V, c_{\alpha} \in \tilde{C}_{A_{\alpha}}(T_{v_{\alpha}}V) \right)_{\alpha=1}^{k} : v_{\alpha} \neq v_{\beta} \text{ for } \alpha \neq \beta \right\} / \frac{\text{translations and}}{\text{dilations.}}$$

Definition 3. A "*d*-manifold with corners" is defined in the same way as a manifold, except coordinate patches look like neighborhoods of 0 in $\mathbb{R}^d_{+k} := \{x \in \mathbb{R}^d : x^i \ge 0 \text{ for } i \le k\}$ instead of merely like neighborhoods of 0 in \mathbb{R}^d or in $\mathbb{R}^d_+ := \{x \in \mathbb{R}^d : x^1 \ge 0\}$.

Theorem 4. $C_A(M)$ is a manifold with corners, and $\partial C_A(M) = \prod_{A' \subset A, |A'| \ge 2} \{(p,c) \colon p \in C^o_{A/A'}(M), c \in \tilde{C}_{A'}(T_{p_{A'}}M)\}.$

- **Theorem 5.** (1) If *M* is compact, so is $C_A(M)$.
 - (2) If A is a singleton, $C_A(M) = M$. If A is a doubleton, then $C_A(M)$ is isomorphic to $M \times M$ minus a tubular neighborhood of the diagonal $\Delta \subset M \times M$. That is, $C_A(M) = M \times M V(\Delta)$.
 - (3) If $B \subset A$ then there is a natural map $p_B: C_A(M) \to C_B(M)$. In particular, for every $i, j \in A$ there is a "direction map" $\phi_{ij}: C_A(\mathbb{R}^n) \to C_{\{i,j\}}(\mathbb{R}^n) \sim S^{n-1}$.
 - (4) If $f: M \to N$ is a smooth embedding, then there's a natural $f_{\star}: C_A(M) \to C_A(N)$.

Now let *D* be a graph whose set of vertices is *A*. If two different vertices $a_{0,1} \in A$ are connected by an edge in *D*, we write $a_0 \xrightarrow{D} a_1$. Likewise, if $A_{0,1} \subset A$ are disjoint subsets, we write $A_0 \xrightarrow{D} A_1$ if $a_0 \xrightarrow{D} a_1$ for some $a_0 \in A_0$ and $a_1 \in A_1$. For any subset A_0 of *A* we let $D(A_0)$ be the restriction of *D* to A_0 .

Definition 6. The open configuration space of *D* in *M* is $C_D^o(M) := \{p : A \to M : p(a_0) \neq p(a_1) \text{ whenever } a_0 \xrightarrow{D} a_1\}.$

Definition 7. The compactified configuration space of *D* in *M* is

$$C_D(M) := \coprod_{\substack{\{A_1,\dots,A_k\}\\A=\cup A_\alpha,\ A_\alpha \neq \emptyset\\\forall \alpha \ D(A_\alpha) \text{ connected}}} \left\{ \left(p_\alpha \in M, c_\alpha \in \tilde{C}_{D(A_\alpha)}(T_{p_\alpha}M) \right)_{\alpha=1}^k : p_\alpha \neq p_\beta \text{ whenever } A_\alpha - - A_\beta \right\}$$

where if V is a vector space and A is a singleton, $\tilde{C}_D(V) := \{a \text{ point}\}, \text{ and if } |A| \ge 2$,

$$\tilde{C}_{D}(V) := \bigsqcup_{\substack{\{A_1,\dots,A_k\}\\A=\cup A_{\alpha};\ k\geq 2,\ A_{\alpha}\neq\emptyset\\\forall\alpha\ D(A_{\alpha}) \text{ connected}}} \left\{ \left(v_{\alpha} \in V, c_{\alpha} \in \tilde{C}_{D(A_{\alpha})}(T_{v_{\alpha}}V) \right)_{\alpha=1}^{k} : v_{\alpha}\neq v_{\beta} \text{ whenever } A_{\alpha} \xrightarrow{D} A_{\beta} \right\} / \begin{array}{c} \text{translations}\\\text{and}\\\text{dilations.} \end{array}$$

Theorem 8. The obvious parallel of the previous theorems holds.

Definition 9. Write $S^n = \mathbb{R}^n \cup \{\infty\}$ and set $\overline{C}_A(\mathbb{R}^n) := \{c \in C_{A \cup \{\infty\}}(S^n) : p_{\infty}(c) = \infty\}.$

Theorem 10. $\bar{C}_A(\mathbb{R}^n)$ is a compact manifold with corners and the direction maps $\phi_{ij} \colon \bar{C}_A(\mathbb{R}^n) \to S^{n-1}$ remain well-defined.

Finally, given $\gamma: S^1 \to \mathbb{R}^3$ and disjoint finite sets *A* and *B*, we set

$$C_{A,B}^{\gamma} \coloneqq \left\{ (c',c) \colon c' \in C_A(S^1), \ c \in \overline{C}_{A \cup B}(\mathbb{R}^3), \ \gamma_*(c') = p_A(c) \right\}$$

(and similarly C_D^{γ} for appropriate graphs D). The obvious variants of the theorems remain valid.