14-1100 Oct 27, hours 20-21: Rings, Cayley-Hamilton, quotients and isomorphism theorems
october-10-14 1:09 PM
HWY 2 questions added o
Riddle Along $1723[5][6][8]$
Two players alternate drawing cards from the above deck. The first player to have 3 cards that add up to 15 , wins. Would you like to be the first to move or the second?

Reminders 1. Rings: $(R,+, x, O \neq 1)$
2. $R[x], M_{n \times n}(R), R G$
3. Morphisms (Make rings a "category") $[F(1)=1]$

Fer the - examples.

$$
\begin{aligned}
& \text { 1. If } \varphi: G \rightarrow H, \quad \varphi_{*}: R G \rightarrow R H \\
& \text { 2. } M_{n \times n}(R[x]) \simeq M_{n \times n}(R)[x]
\end{aligned}
$$

cayley-Hanilton A matrix annihilates its characteristic poly:
Let $A \in M_{n \times n}(R), R$ commutative. Set

$$
\chi_{A}(t)=\operatorname{dit}(t I-A) \cdot \text { then } \quad \chi_{A}(A)=0
$$

Wrong proof. $\chi_{A}(A)=\operatorname{det}(A I-A)=\operatorname{det}(0)=0$
Nonesense D_{0} Would have worked for trace just
as well $0_{0} \quad x_{A}^{+r}=\operatorname{tr}(t I-A)=n t-\operatorname{tr}(A)$
So $A=\frac{\operatorname{tr} A}{n} I$
The issue: $M_{n \times n}(K)[t] \xrightarrow{\text { aet }} R[t]$ not

Right Proof.

$$
\begin{array}{cl}
\operatorname{in} M_{n a n}(R[t]) & \text { in } M_{x a n}(R)[t] \\
\operatorname{dtt}(t I-A) \cdot I \stackrel{\downarrow}{=} \operatorname{adj}(t I-A)(t I-A)= & \left(\sum B_{i} t^{i}\right)(t I-A) \text { in }
\end{array}
$$

now substitute $t=A$. The $B ;$'s commute with $A \quad 2015-12$ because $(t I-A) a d j(t I-A)=a d j(t I-A)(t I-A)$.
im, subring, karpirideal. (iduals are subrags but newor
Q. Is uvorylidial a kornol? subrings)

Ans. Difine R / I.
Exampll. $\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle=R_{1}$
The Isomorphisen theorems. 1. $\varphi: R \rightarrow S \Rightarrow R / k e r \varphi=\operatorname{in} \varphi$. (Exannle: $\left.e V_{i}: R[R] \rightarrow \sigma \Rightarrow R_{1} \cong C\right)$ done
2. $\frac{A+I}{I} \cong A_{A} I I \quad A C R$ subing, $I \subset R$ propor ideal.
3. ICJCR ideals $\Rightarrow \frac{B / I}{J I I} \simeq R / J$
4. Given an idtal I of K, there's a bijection bituren
ideals $I \subset J C R$ \& ideals of K / I. From thi point our gonl imoduls ovCr $\frac{1 D^{\prime \prime}}{}$
Better Rings. 1. The ultimate:

$\left.\begin{array}{l}\text { Exaphle: } H=\{a+b i+c j+d k\} / i^{2}=j^{2} k^{2}-k^{2}=-1 \\ \text { useall for } 3 D=k \\ \text { rotations, }+c, \ldots\end{array}\right)$
2. (Intogral) domains: commutativ, has no o-divisors. How make? For ibeuls which, B/I is a filld or a doman?
-... from now on, R is commutative.
Maxinal Ideals. 1. Definition.
2. ICR is maximal $\Leftrightarrow R / I$ is a field.

Fishy proof: Use the yth isomorphisn theorem.
Honest proof: $\Rightarrow: x \notin I \Rightarrow R x+I=R \Rightarrow \exists y \in R \quad y x+I=1+I$

$$
\Leftarrow J_{\nexists I}, x \in J \backslash I \Rightarrow[x]_{I} \neq 0 \Rightarrow \exists_{J} x y-1 \in I \Rightarrow \mid \in J
$$

Exanples.1. $p \mathbb{Z}$ is a maxind ideal in \mathbb{Z}.
2. $S=l^{\infty}=\left\{\begin{array}{c}\text { sndd s.aqs } \\ \text { in } \mathbb{R}^{\prime}\end{array}\right\} \quad A_{n}=\left\{\left(a_{i}\right): a_{n}=0\right\}$

Ththy heorem. Every ideal is contained in a maximal iteal.
Proof using Zorn's Limma.
Theorem There exists a function

Lin: $\left\{\begin{array}{c}\text { bad seq's } \\ \text { in } \mathbb{R}^{\prime}\end{array}\right\} \rightarrow \mathbb{N} \quad$ s.t.

1. If $\left(a_{n}\right)$ is convergent, $\lim a_{n}=\lim a_{n}$.
2. $\lim \left(a_{n}+b_{n}\right)=\operatorname{Lim}(a)+\lim \left(b_{n}\right)$
3. $\operatorname{Lim}\left(a_{n} b_{n}\right)=\operatorname{Lim}\left(a_{n}\right) \cdot \operatorname{Lim}\left(b_{n}\right)$ +More....
 J - a maxiond icel containing I.
$\operatorname{Lin}: S \rightarrow S / J \overline{\overline{D_{0}}} \mathbb{R}$
Prime Ideals. 1. Definition $P \subset R$ is prime if ab eP

$$
\Rightarrow a \in P \text { or } b \in P
$$

2. Theorem. R / P is a domain ifs P is prime.

$$
\begin{aligned}
& \text { Proof } \Rightarrow a b \in P \Rightarrow[a b]=0 \Rightarrow[a][b]=0 \Rightarrow\left[\begin{array}{c}
{[a]=0 \Rightarrow a \in p} \\
{[b]=0 \Rightarrow b \in p .}
\end{array}\right. \\
& \leftarrow[a][b]=0 \Rightarrow[a b]=0 \Rightarrow a b \in P \Rightarrow a \in \mathbb{P} \Rightarrow[a]=0 \\
& b \in p \Rightarrow[b]=0
\end{aligned}
$$

Theoren. A maximal ideal is prime.
tar git line
From this point on, R is a Commuthtue intoyal domain? "alb are associates"
primes. 1 $a / b \quad[a \neq 0, \exists 9$ sit. $a q=b] \quad(a / b \wedge b / a \Rightarrow a=u b)$
2. $\operatorname{gcd}(a, b)=9 \quad$ j $\operatorname{gcd}=q \& \quad \operatorname{gcd}=q^{\prime} \Rightarrow q^{\prime}=u q$
3. Primes: $p \neq 0$ non-unit $p|a b \Rightarrow p| a$ or p / b P is prime iff $\langle\rho\rangle$ is prime ideal.
4. Irreducible $x=a b \Rightarrow a \in R^{*} \vee b \in R^{*}$

Claim. prime \Rightarrow irreducible
Counter example: in $\mathbb{Z}[\sqrt{-5}]$,

$$
\begin{aligned}
& p=a b \Rightarrow p / a \Rightarrow a=P C \\
& \Rightarrow P=P c b \Rightarrow c b=1 \Rightarrow b \in R^{*}|2|(1-\sqrt{-5})(1+\sqrt{-5})=6
\end{aligned}
$$

UFOs. Def. Ere non-zuo element can be factored into pines.
The. Uniqueness up to units of a permutation.
Thin. In a UFO, prime \Leftrightarrow irreducible.
pf If an irrid. is decomposed, the decomposition must

Thm. VFD \Leftrightarrow eVr $x \neq 0$ yhas a unifaco decomposition
 Thm. In a UFD ged's always exst.

