1.1. Lie bialgebras.

Throughout this paper, k denotes a field of characteristic zero. Let \mathfrak{a} be a Lie algebra over k, and. We δ be a linear map $\delta: \mathfrak{a} \to \mathfrak{a} \otimes \mathfrak{a}$.

Definition.. One says that the map δ defines a Lie bialgebra structure on $\mathfrak a$ if it satisfies two conditions:

(i) δ is a 1-cocycle of \mathfrak{a} with coefficients in $\mathfrak{a} \otimes \mathfrak{a}$, i.e.

$$\delta([ab]) = [1 \otimes a + a \otimes 1, \delta(b)] + [\delta(a), 1 \otimes b + b \otimes 1];$$

(ii) The map $\delta^* : \mathfrak{a}^* \otimes \mathfrak{a}^* \to \mathfrak{a}^*$ dual to δ is a Lie bracket on \mathfrak{a}^* . In this case δ is called the cocommutator of \mathfrak{a} .

For any Lie bialgebra \mathfrak{a} , the vector space $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{a}^*$ has a natural structure of a Lie algebra. Namely, $\mathfrak{a}, \mathfrak{a}^*$ are Lie subalgebras in \mathfrak{g} with bracket defined above, and commutator between elements of $\mathfrak{a}, \mathfrak{a}^*$ is given by

$$[a,b] = (\mathrm{ad}^*a)b - (1 \otimes b)(\delta(a)), a \in \mathfrak{a}, b \in \mathfrak{a}^*,$$

Let \mathfrak{a} be a Lie algebra, and $r \in \mathfrak{a} \otimes \mathfrak{a}$. The equation

$$[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0$$

in $U(\mathfrak{a})^{\otimes 3}$ is called the classical Yang-Baxter equation. It is easy to check that the canonical element r satisfies this equation.

$$F(\Phi_{VWU})J_{V\otimes W,U}\circ (J_{VW}\otimes 1)=J_{V,W\otimes U}\circ (1\otimes J_{WU})$$

$$J = (\phi^{-1} \otimes \phi^{-1}) \left(\Phi_{1,2,34}^{-1} (1 \otimes \Phi_{2,3,4}) se^{h\Omega_{23}/2} (1 \otimes \Phi_{2,3,4}^{-1}) \Phi_{1,2,34} (1_{+} \otimes 1_{+} \otimes 1_{-} \otimes 1_{-}) \right)$$

There exist "universal quantization functors"

(i) $Q: HA_{(\Delta-\Delta^{op}, S-S^{-1})} \to \overline{LBA_{(\delta)}}$ such that for any Lie bialgebra $\mathfrak a$ over k $\widehat{Q}(\mathfrak{a}_h) = U_h(\mathfrak{a});$

(ii) $Q^{qt}: QTHA_{\langle \Delta - \Delta^{op}, R-1, S-S^{-1} \rangle} \to \overline{QTLBA_{\langle r \rangle}}$ such that for any quasitriangular Lie bialgebra \mathfrak{a} over k $\widehat{Q^{qt}}(\mathfrak{a}_h) = U_h^{qt}(\mathfrak{a})$, where $U_h^{qt}(\mathfrak{a})$ is the quasitriangular quantization defined in Section 6.1;

(iii) $Q^{YB}: QYBA_{(R-1)} \rightarrow CYBA_{(r)}$ such that for any classical Yang-Baxter algebra (A, r) over k one has $\widehat{Q^{YB}}(A_h) = (A, R)$, where R is constructed from r as explained in Chapter 5.

= | + | + | + | + | + | + | + |

STU: ¥ = 14-X, X= X+X=11-X

THX: 工=H-X 工=H-X I= H+H-X-X

anything in itself ?

Why Should We Care? * Because it's there of stary it.

- A gateway into the forbidden territory of "quantum groups".
- Abstractly more pleasing: We study the things, and not just their representations.
- \mathcal{A}^v is sometimes easier than \mathcal{A}^u : Alexander, say, arises easily from the 2D Lie algebra⁴.
- Potentially, \mathcal{A}^v has many more "internal quotients" than there are Lie bialgebras. What are they and what are the Pride Parade by Assaf corresponding theories?

(From DBN/Talks/Swissknots-1105)

Seen today at the Tel-Aviv Bar-Natan