Dror Bar-Natan: Talks / Classes: Aarhus-1305: Day 8 Handout Clippings from http://www.math.toronto.edu/~drorbn/Talks/

{Bonn-0908, Goettingen-1004, Montpellier-1006}

Free Lie statement (Kashiwara-Vergne). There exist convergent Lie series F and G so that with $z = \log e^x e^y$

$$x + y - \log e^{y} e^{x} = (1 - e^{-\operatorname{ad} x})F + (e^{\operatorname{ad} y} - 1)G$$

$$\operatorname{tr}(\operatorname{ad} x)\partial_{x}F + \operatorname{tr}(\operatorname{ad} y)\partial_{y}G = \frac{1}{2}\operatorname{tr}\left(\frac{\operatorname{ad} x}{e^{\operatorname{ad} x} - 1} + \frac{\operatorname{ad} y}{e^{\operatorname{ad} y} - 1} - \frac{\operatorname{ad} z}{e^{\operatorname{ad} z} - 1} - 1\right)$$

Wheels and Trees. With
$$\mathcal{P}$$
 for \mathcal{P} rimitives,
 $0 \longrightarrow \langle \text{wheels} \rangle \xrightarrow{\iota} \mathcal{P}\mathcal{A}^w(\uparrow_n) \xrightarrow[l]{\frac{u}{\pi}} \langle \text{trees} \rangle \longrightarrow 0$,
with $2 \xrightarrow{l} 2 \xrightarrow{(u,l)} \left(1 \xrightarrow{l} 2, 1 \xrightarrow{(u,l)} \right) \left(1 \xrightarrow{l} 2, 1 \xrightarrow{(u,l)} \right)$.
So proj $\mathcal{K}^w(\uparrow_n) \cong \mathcal{U}(\langle \text{trees} \rangle \ltimes \langle \text{wheels} \rangle)$.
trees atop a wheel and a little prince

So proj $\mathcal{K}^{\mathfrak{a}}(\uparrow_n) \cong \mathcal{U}(\langle \text{trees} \rangle \ltimes \langle \text{wheels} \rangle).$ and a little prince Some A-T Notions. \mathfrak{a}_n is the vector space with basis x_1, \ldots, x_n , $\mathfrak{lie}_n = \mathfrak{lie}(\mathfrak{a}_n)$ is the free Lie algebra, $\operatorname{Ass}_n = \mathcal{U}(\mathfrak{lie}_n)$ is the free associative algera "of words", $\operatorname{tr} : \operatorname{Ass}_n^+ \to \operatorname{tr}_n = \operatorname{Ass}_n^+ / (x_{i_1} x_{i_2} \cdots x_{i_m} = x_{i_2} \cdots x_{i_m} x_{i_1})$ is the "trace" into "cyclic words", $\mathfrak{der}_n = \mathfrak{der}(\mathfrak{lie}_n)$ are all the derivations, and

 $\mathfrak{tder}_n = \{ D \in \mathfrak{der}_n : \forall i \; \exists a_i \; \text{s.t.} \; D(x_i) = [x_i, a_i] \}$

are "tangential derivations", so $D \leftrightarrow (a_1, \ldots, a_n)$ is a vector space isomorphism $\mathfrak{a}_n \oplus \mathfrak{tder}_n \cong \bigoplus_n \mathfrak{lie}_n$. Finally, div : $\mathfrak{tder}_n \to \mathfrak{tr}_n$ is $(a_1, \ldots, a_n) \mapsto \sum_k \operatorname{tr}(x_k(\partial_k a_k))$, where for $a \in \operatorname{Ass}_n^+$, $\partial_k a \in \operatorname{Ass}_n$ is determined by $a = \sum_k (\partial_k a) x_k$, and j: TAut_n = exp(\mathfrak{tder}_n) $\to \mathfrak{tr}_n$ is $j(e^D) = \frac{e^D - 1}{D} \cdot \operatorname{div} D$. Theorem. Everything matches. $\langle \operatorname{trees} \rangle$ is $\mathfrak{a}_n \oplus \mathfrak{tder}_n$ as Lie

Theorem. Everything matches. $\langle \text{trees} \rangle$ is $\mathfrak{a}_n \oplus \mathfrak{toer}_n$ as Lie algebras, $\langle \text{wheels} \rangle$ is \mathfrak{tr}_n as $\langle \text{trees} \rangle / \mathfrak{toer}_n$ -modules, div $D = \iota^{-1}(u-l)(D)$, and $e^{uD}e^{-lD} = e^{jD}$.

Differential Operators. Interpret $\hat{\mathcal{U}}(I\mathfrak{g})$ as tangential differential operators on Fun(\mathfrak{g}):

• $\varphi \in \mathfrak{g}^*$ becomes a multiplication operator.

• $x \in \mathfrak{g}$ becomes a tangential derivation, in the direction of the action of $\operatorname{ad} x$: $(x\varphi)(y) := \varphi([x, y])$.

Trees become vector fields and $uD \mapsto lD$ is $D \mapsto D^*$. So div D is $D - D^*$ and $jD = \log(e^D(e^D)^*) = \int_0^1 dt e^{tD} \operatorname{div} D$.

http://www.math.toronto.edu/~drorbn/Talks/Aarhus-1305/

Yester http://w today's http://d

Torossian

Yesterday's stuff (KBH) is in the nearly-finished http://www.math.toronto.edu/~drorbn/papers/KBH/; today's is in the nearly finished http://drorbn.net/?title=WKO (joint with Z. Dancso)

Knot-Theoretic statement. There exists a homomorphic expansion Z for trivalent w-tangles. In particular, Z should respect R4 and intertwine annulus and disk unzips:

Diagrammatic statement. Let $R = \exp \exists i \in \mathcal{A}^w(\uparrow\uparrow)$. There exist $\omega \in \mathcal{A}^w(\uparrow\uparrow)$ and $V \in \mathcal{A}^w(\uparrow\uparrow)$ so that

Algebraic statement. With $I\mathfrak{g} := \mathfrak{g}^* \rtimes \mathfrak{g}$, with $c : \hat{\mathcal{U}}(I\mathfrak{g}) \to \hat{\mathcal{U}}(I\mathfrak{g})/\hat{\mathcal{U}}(\mathfrak{g}) = \hat{\mathcal{S}}(\mathfrak{g}^*)$ the obvious projection, with S the antipode of $\hat{\mathcal{U}}(I\mathfrak{g})$, with W the automorphism of $\hat{\mathcal{U}}(I\mathfrak{g})$ induced by flipping the sign of \mathfrak{g}^* , with $r \in \mathfrak{g}^* \otimes \mathfrak{g}$ the identity element and with $R = e^r \in \hat{\mathcal{U}}(I\mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $\omega \in \hat{\mathcal{S}}(\mathfrak{g}^*)$ and $V \in \hat{\mathcal{U}}(I\mathfrak{g})^{\otimes 2}$ so that $(1) \ V(\Delta \otimes 1)(R) = R^{13}R^{23}V$ in $\hat{\mathcal{U}}(I\mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$

Unitary statement. There exists $\omega \in \operatorname{Fun}(\mathfrak{g})^G$ and an (infinite order) tangential differential operator V defined on $\operatorname{Fun}(\mathfrak{g}_x \times \mathfrak{g}_y)$ so that

(1) $\widehat{Ve^{x+y}} = \widehat{e^x}\widehat{e^y}V$ (allowing $\widehat{\mathcal{U}}(\mathfrak{g})$ -valued functions) (2) $VV^* = I$ (3) $V\omega_{x+y} = \omega_x\omega_y$

Convolutions statement (Kashiwara-Vergne). Convolutions of invariant functions on a Lie group agree with convolutions of invariant functions on its Lie algebra. More accurately, let G be a finite dimensional Lie group and let \mathfrak{g} be its Lie algebra, let $j : \mathfrak{g} \to \mathbb{R}$ be the Jacobian of the exponential map exp : $\mathfrak{g} \to G$, and let $\Phi : \operatorname{Fun}(G) \to \operatorname{Fun}(\mathfrak{g})$ be given by $\Phi(f)(x) := j^{1/2}(x) f(\exp x)$. Then if $f, g \in \operatorname{Fun}(G)$ are Ad-invariant and supported near the identity, then $\Phi(f) \star \Phi(q) = \Phi(f \star q).$

The Orbit Method. By Fourier analysis, the characters of $(\operatorname{Fun}(\mathfrak{g})^G, \star)$ correspond to coadjoint orbits in \mathfrak{g}^* . By averaging representation matrices and using Schur's lemma to replace intertwiners by scalars, to every irreducible representation of G we can assign a character of $(\operatorname{Fun}(G)^G, \star)$.

