Dror Bar－Natan：Talks／Classes：Aarhus－1305：Day 8 Handout http：／／www．math．toronto．edu／～drorbn／Talks／Aarhus－1305／

Clippings from http：／／mww．math．toronto．edu／～drorbn／Talks／ \｛Bonn－0908，Goettingen－1004，Montpellier－1006\}


# Yesterday＇s stuff（KBH）is in the nearly－finished 

 http：／／mww．math．toronto．edu／～drorbn／papers／KBH／； today＇s is in the nearly finished http：／Idrorbn．net／？title＝WKO（joint with Z．Dancso）

Knot－Theoretic statement．There exists a homomorphic ex－ pansion $Z$ for trivalent w－tangles．In particular，$Z$ should respect $R 4$ and intertwine annulus and disk unzips：
（1）

$-$

（2）

（3）


Diagrammatic statement．Let $R=\exp \nLeftarrow \in \mathcal{A}^{w}(\uparrow \uparrow)$ ．There exist $\omega \in \mathcal{A}^{w}(\uparrow)$ and $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that

Alekseev－Torossian statement．There is an element $F \in \mathrm{TAut}_{2}$ with

$$
F(x+y)=\log e^{x} e^{y}
$$

and $j(F) \in \operatorname{im} \tilde{\delta} \subset \operatorname{tr}_{2}$ ，where for $a \in \operatorname{tr}_{1}$ ， $\tilde{\delta}(a):=a(x)+a(y)-a\left(\log e^{x} e^{y}\right)$.


Free Lie statement（Kashiwara－Vergne）．There exist conver－ gent Lie series $F$ and $G$ so that with $z=\log e^{x} e^{y}$

$$
x+y-\log e^{y} e^{x}=\left(1-e^{-\operatorname{ad} x}\right) F+\left(e^{\operatorname{ad} y}-1\right) G
$$

$$
\begin{aligned}
& \operatorname{tr}(\operatorname{ad} x) \partial_{x} F+\operatorname{tr}(\operatorname{ad} y) \partial_{y} G= \\
& \frac{1}{2} \operatorname{tr}\left(\frac{\operatorname{ad} x}{e^{\operatorname{ad} x}-1}+\frac{\operatorname{ad} y}{e^{\operatorname{ad} y}-1}-\frac{\operatorname{ad} z}{e^{\operatorname{ad} z}-1}-1\right)
\end{aligned}
$$

Wheels and Trees．With $\mathcal{P}$ for $\mathcal{P}$ rimitives，

So $\operatorname{proj} \mathcal{K}^{w}\left(\uparrow_{n}\right) \cong \mathcal{U}(\langle$ trees $\rangle \ltimes\langle$ wheels $\rangle)$ ．
trees atop a wheel and a little prince．

Some A－T Notions． $\mathfrak{a}_{n}$ is the vector space with basis $x_{1}, \ldots, x_{n}, \operatorname{lic}_{n}=\mathfrak{l i c}\left(\mathfrak{a}_{n}\right)$ is the free Lie algebra， $\operatorname{Ass}_{n}=$ $\mathcal{U}\left(\mathrm{Iie}_{n}\right)$ is the free associative algera＂of words＂， $\operatorname{tr}: \mathrm{Ass}_{n}^{+} \rightarrow$ $\operatorname{tr}_{n}=\mathrm{Ass}_{n}^{+} /\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=x_{i_{2}} \cdots x_{i_{m}} x_{i_{1}}\right)$ is the＂trace＂into ＂cyclic words＂， $\mathfrak{d e r}_{n}=\mathfrak{d e r}\left(\mathrm{Lie}_{n}\right)$ are all the derivations，and
$\mathfrak{t d e r}_{n}=\left\{D \in \mathfrak{J e r}_{n}: \forall i \exists a_{i}\right.$ s．t．$\left.D\left(x_{i}\right)=\left[x_{i}, a_{i}\right]\right\}$
are＂tangential derivations＂，so $D \leftrightarrow\left(a_{1}, \ldots, a_{n}\right)$ is a vec－ tor space isomorphism $\mathfrak{a}_{n} \oplus \mathfrak{t d e r}_{n} \cong \bigoplus_{n}$ lie $_{n}$ ．Finally，div ： $\operatorname{tder}_{n} \rightarrow \operatorname{tr}_{n}$ is $\left(a_{1}, \ldots, a_{n}\right) \mapsto \sum_{k} \operatorname{tr}\left(x_{k}\left(\partial_{k} a_{k}\right)\right)$ ，where for $a \in \mathrm{Ass}_{n}^{+}, \partial_{k} a \in \mathrm{Ass}_{n}$ is determined by $a=\sum_{k}\left(\partial_{k} a\right) x_{k}$ ， and $j: \operatorname{TAut}_{n}=\exp \left(\mathfrak{t o e r}_{n}\right) \rightarrow \operatorname{tr}_{n}$ is $j\left(e^{D}\right)=\frac{e^{D}-1}{D} \cdot \operatorname{div} D$ ．
Theorem．Everything matches．〈trees〉 is $\mathfrak{a}_{n} \oplus \operatorname{tder}_{n}$ as Lie algebras，〈wheels〉 is $\mathfrak{t r}_{n}$ as 〈trees〉／ $\mathfrak{t d e r} r_{n}$－modules， $\operatorname{div} D=$ $\iota^{-1}(u-l)(D)$ ，and $e^{u D} e^{-l D}=e^{j D}$ ．
Differential Operators．Interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differen－ tial operators on Fun（g）：
－$\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator．
－$x \in \mathfrak{g}$ becomes a tangential derivation，in the direction of the action of $\operatorname{ad}:(x \varphi)(y):=\varphi([x, y])$ ．
Trees become vector fields and $u D \mapsto l D$ is $D \mapsto D^{*}$ ．So $\operatorname{div} D$ is $D-D^{*}$ and $j D=\log \left(e^{D}\left(e^{D}\right)^{*}\right)=\int_{0}^{1} d t e^{t D} \operatorname{div} D$ ．
（1）


Algebraic statement．With $I \mathfrak{g}:=\mathfrak{g}^{*} \rtimes \mathfrak{g}$ ，with $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow$ $\hat{\mathcal{A}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ the obvious projection，with $S$ the an－ tipode of $\hat{\mathcal{U}}(\mathrm{Ig})$ ，with $W$ the automorphism of $\hat{\mathcal{U}}(I \mathfrak{g})$ induced by flipping the sign of $\mathfrak{g}^{*}$ ，with $r \in \mathfrak{g}^{*} \otimes \mathfrak{g}$ the identity element and with $R=e^{r} \in \hat{\mathcal{U}}(I \mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $\omega \in \hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ and $V \in \hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2}$ so that
（1）$V(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$
$\begin{array}{ll}\text {（2）} V \cdot S W V=1 & (3)(c \otimes c)(V \Delta(\omega))=\omega \otimes \omega\end{array}$

Unitary statement．There exists $\omega \in \operatorname{Fun}(\mathfrak{g})^{G}$ and an（infinite order）tangential differential operator $V$ defined on $\operatorname{Fun}\left(\mathfrak{g}_{x} \times\right.$ $\mathfrak{g}_{y}$ ）so that
（1）$V \widehat{e^{x+y}}=\widehat{e^{x}} \widehat{e^{y}} V$（allowing $\hat{\mathcal{U}}(\mathfrak{g})$－valued functions）
（2）$V V^{*}=I$
（3）$V \omega_{x+y}=\omega_{x} \omega_{y}$
Convolutions statement（Kashiwara－Vergne）．Convolutions of invariant functions on a Lie group agree with convolutions of invariant functions on its Lie algebra．More accurately， let $G$ be a finite dimensional Lie group and let $\mathfrak{g}$ be its Lie algebra，let $j: \mathfrak{g} \rightarrow \mathbb{R}$ be the Jacobian of the exponential map $\exp : \mathfrak{g} \rightarrow G$ ，and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(\mathfrak{g})$ be given by $\Phi(f)(x):=j^{1 / 2}(x) f(\exp x)$ ．Then if $f, g \in \operatorname{Fun}(G)$ are Ad－invariant and supported near the identity，then

$$
\Phi(f) \star \Phi(g)=\Phi(f \star g) .
$$



The Orbit Method．By Fourier anal－ ysis，the characters of $\left(\operatorname{Fun}(\mathfrak{g})^{G}, \star\right)$ correspond to coadjoint orbits in $\mathfrak{g}^{*}$ ． By averaging representation matrices and using Schur＇s lemma to replace intertwiners by scalars，to every irre－ ducible representation of $G$ we can as－ sign a character of $\left(\operatorname{Fun}(G)^{G}, \star\right)$ ．
 and the tetrahedron

All strands here are green


Punctures expand to
the nearest Y-vertex:


Note.

$\mathcal{K}^{\bar{w}}$. Allow tubes and strands and tube-strand vertices as above, yet allow only "compact" knots - nothing runs to $\infty$.
$\mathcal{K}^{w} \leftrightarrow \mathcal{K}^{\bar{w}}$ equivalence. $\mathcal{K}^{w}$ has a homomorphic expansion iff $\mathcal{K}^{\bar{w}}$ has a homomorphic expansion.
$\Longrightarrow$ Puncture $\mathcal{A}$ and $Z$ :


Theorem. The generators of $\mathcal{K}^{\bar{w}}$ can be written in terms of the generators of $\mathcal{K}^{u}$ (i.e., given $\Phi$, can write a formula for $V$.
Sketch.

so enough to write any $T$. Here go:


Theorem. The Alekseev-Torossian statement is equivalent to the knot-theoretic statement.
Proof. Write $V=e^{c} e^{u D}$ with $c \in \mathfrak{t r}_{2}, D \in \operatorname{tocr}_{2}$, and $\omega=e^{b}$
with $b \in \operatorname{tr}_{1}$. Then (1) $\Leftrightarrow e^{u D}(x+y) e^{-u D}=\log e^{x} e^{y}$,
(2) $\Leftrightarrow I=e^{c} e^{u D}\left(e^{u D}\right)^{*} e^{c}=e^{2 c} e^{j D}$, and
(3) $\Leftrightarrow e^{c} e^{u D} e^{b(x+y)}=e^{b(x)+b(y)} \Leftrightarrow e^{c} e^{b\left(\log e^{x} e^{y}\right)}=e^{b(x)+b(y)}$
$\Leftrightarrow c=b(x)+b(y)-b\left(\log e^{x} e^{y}\right)$.

