From Stonehenge to Witten Skipping all the Details
Oporto Meeting on Geometry, Topology and Physics, July 2004
Dror Bar-Natan, University of Toronto
It is well known that when the Sun rises on midsummer's morning over the "Heel Stone" at Stonehenge, its first rays shine right through the open arms of the horseshoe arrangement. Thus astrological lineups, one of the pillars of modern thought, are much older than the famed Gaussian linking number of two knots.
$\langle D, K\rangle_{\text {四 }}:=\binom{$ The signed Stonehenge }{ pairing of D and $K}:$

$K=$

Thus we consider the generating function of all stellar coincidences:
$Z(K):=\lim _{N \rightarrow \infty} \sum_{3 \text {-valent }} \frac{1}{D^{c} c!\binom{N}{e}}\langle D, K\rangle_{\rangle_{\pi}} D \cdot\left(\begin{array}{c}\text { framing- } \\ \text { dependent } \\ \text { counter-term }\end{array}\right) \in \mathcal{A}(\circlearrowleft)$
Theorem. Modulo Relations, $Z(K)$ is a knot invariant!
When deforming, catastrophes occur when:

A plane moves over an intersection point -
Solution: Impose IHX,

An intersection line cuts through the knot Solution: Impose STU,

(similar argument)

It all is perturbative Chern-Simons-Witten theory:
$\int_{\mathfrak{g} \text {-connections }}^{\mathcal{D} A \operatorname{hol}_{K}(A) \exp \left[\frac{i k}{4 \pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right]}$

$$
\rightarrow \sum_{\substack{\text { D: Feynman } \\ \text { diagram }}} W_{\mathfrak{g}}(D)
$$

Shiing-shen Chern

The Gauss curve slides over a star Solution: Multiply by a framing-dependent counter-term.
(not shown here)

Recall that the latter is itself an astrological construct: one of the standard ways to compute the Gaussian linking number is to place the two knots in space and then count (with signs) the number of shade points cast on one of the knots by the other knot, with the only lighting coming from some fixed distant star.

The
Gaussian linking number

$)=\frac{1}{2}$

chopsticks

Carl Friedrich Gauss

$l k=2$
Dylan Thurston

$V:$ Vidar space
VV: Lebesgue's measure on V.
Q : A quadratic form on ∇_{j} $Q(v)=\langle L v, v\rangle$ where $L: V \rightarrow V^{*}$ is linear
Comate $I=\int_{\nabla} d v e^{d Q+P}$ $"=\sum_{m=0}^{\infty} \frac{1}{m!} \int_{V} d^{\prime} p^{m} e^{Q / 2}$ $\left.\underset{\pi=z_{i=1}}{\sim} \sum_{m=0}^{\infty} \frac{1}{m!} p^{m}\left(\partial_{n}\right) l^{-\frac{1}{2} Q^{-1}(v)}\right|_{\psi_{0}}$
$=\left.\sum_{m, n=0}^{\infty} \frac{(-1)^{n}}{2^{n} m!n!} p^{m}(\partial)\left(Q^{-1}\right)^{n}\right|_{V=0}$
The Fourier Transform:
$(F: V \rightarrow \mathbb{C}) \Rightarrow\left(F: V^{*} \rightarrow C\right)$
Via $\tilde{f}(\varphi)=\int_{V} F(v) e^{-i\langle\varphi, v\rangle} d v$.
simple fads:

1. $\tilde{F}(0)=\int_{V} F(V) d V$.
2. $\frac{\partial}{\partial v_{i}} \widetilde{\sim} \sim V^{\prime} f$.
3. $\left(e^{Q / 2}\right) \sim l^{-Q-1 / 2}$
where $Q^{-1}(\varphi)=\left\langle\varphi, L^{-1} \varphi\right\rangle$
(that's the heart of the Foncior Inversion Formula).
Differentiation and Pairings:
$\partial_{x}^{3} 2_{y}^{2} x^{3} y^{2}=3!\cdot 2!j$ indeed,

$\left(\lambda_{i j k} \partial_{j} \partial_{j} \partial_{k}\right)^{2}\left(\lambda^{\rho 9} \varphi_{p} \varphi_{q}\right)^{3}$ is

In our case,

* Q is d, so Q^{-1} is an integral operator.
- P is $\frac{2}{3} A^{\wedge} A^{\wedge} A$

So $\int_{V} H(v) e^{\frac{1}{2} Q+\rho} d v$
$\left.v H(\partial) e^{\rho(\partial)} e^{-Q-1 \varphi) / 2}\right|_{\varphi=0}$ is

A

$=\sum_{\text {Diegrans }} C(D)\left(\begin{array}{l}\text { Products of } \\ Q^{-1} / \text { op's } \\ \text { and one } H\end{array}\right)$

"God created the knots, all else in topology is the work of man."

Leopold Kronecker (modified)

Knotted Trivalent Graphs, Tetrahedra and Associators

HUJI Topology and Geometry Seminar, November 16, 2000
Dror Bar-Natan

Goal: Z: $\{$ knots $\}->\{$ chord diagrams $\} / 4 \mathrm{~T}$ so that

Proof.

Extend to Knotted Trivalent Graphs (KTG's):

Need a new relation:

Easy, powerful moves:

Using moves, KTG is generated by ribbon twists and the tetrahedron

Claim. With $\Phi:=Z(\Delta)$, the above relation becomes equivalent to the Drinfel'd's pentagon of the theory of quasi Hopf algebras.

Further directions:

1. Relations with perturbative Chern-Simons theory.
2. Relations with the theory of 6 j symbols
3. Relations with the Turaev-Viro invariants.
4. Can this be used to prove the Witten asymptotics conjecture?
5. Does this extend/improve Drinfel'd's theory of associators?

This handout is at http://www.ma.huji.ac.i1/~drorbn/Talks/HUJI-001116

