HW8 on weld by midnight tomorrow?
problem Given $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)$, find a power series $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ that solves this emu'.
The Airy example $y^{\prime \prime}=x y$ get: $\alpha_{2}=0$

$$
(n+2)(n+1) a_{n+2}=a_{n-1}
$$

$$
\begin{aligned}
& y_{1}=1+\frac{1}{2 \cdot 3} x^{3}+\frac{1}{2 \cdot 3 \cdot 5 \cdot 6} x^{6}+\frac{1}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9} x^{9} \\
& y_{2}=x+\frac{1}{3 \cdot 4} x^{4}+\frac{1}{3 \cdot 4 \cdot 6 \cdot 7} x^{7}+\ldots
\end{aligned}
$$

Show the Airy handout.
state Fuchs' theorem: The
series for $y(x)$ converges at radius at least the lust of The radii for p, q, g. proof as in handout:

Proc Ber-Natan lazes rali2-13 287 Advanced oDis
Fuchs' Theorem
Following Taylor's Introduction to Di/jerenalal Equations.
Theorem 1. Suppose the series $v(x)=\sum_{k=0}^{\infty} v_{k} x^{k}$ solves the n-dimensional systern $v^{\prime}(x)=A(x) v(x)+g(x)$, where $A(x)$ and $g(x)$ are given by power series $A(x)=\sum_{k-0}^{\infty} A_{k} x^{k}$ and $g(x)=\sum_{k=0}^{\infty} g_{k} x^{k}$ that converge at radius R for some $R>0$. Then the series $v(x)$ converges for any x with $|x|<R$.
Proof. Below $\|M\|$ where M is a matrix or a vector means "the largest absolute value of an entry of M^{*}.

The convergence of the series for A and for g implies that there are constants α and γ such that

$$
\left\|A_{k}\right\|<\alpha R^{-k} \quad \text { and } \quad\left\|g_{k}\right\|<\gamma R^{-k}
$$

We wish to show that whenever $r<R$, there is a constant η such that
(1)

$$
\left\|v_{j}\right\|<\pi r^{-1}
$$

This we shall do by the method of "induction with an undetermined hypothesis". Namely, we assume that for some k Equation (1) holds for all $j \leq k$, without specifying η. We then prove that (il) is true for $j=k+1$ and see what conditions this may put on r. We keep track of these conditions, and at the end of the proof we verify that we could have satisfied them at the start of the proof.

The equation $v^{\prime}=g+A v$ implies that $(k+1) v_{k+1}=g_{k}+\sum_{j=0}^{k} A_{k-j} v_{j}$. Therefore

$$
\begin{aligned}
(k+1)\left\|v_{k+1}\right\| \leq\left\|g_{k}\right\|+\sum_{j=0}^{k} & \left\|A_{k-j} v_{j}\right\|
\end{aligned} \leq\left\|g_{k}\right\|+n \sum_{j=0}^{k}\left\|A_{k-j}\right\| \cdot\left\|v_{j}\right\| .
$$

The last sum is a meometric sum with ratio smaller than 1 Hence its value is hounded ho

Pensive header. Plotting the solutions of the Airy equation $5 y^{\prime \prime}=3 y$.

ne- Plot [fraluate[y[x] /. A1]. $\{\mathrm{x},-10,3\}]$

$$
<\gamma R^{-k}+n \sum_{j=0}^{k} \alpha R^{j-k} \cdot \eta r^{-j}=\gamma R^{-k}+n \alpha \eta r^{-k} \sum_{j=0}^{k}\left(\frac{r}{R}\right)^{k-j}
$$

The last sum is a geometric sum with ratio smaller than 1 . Hence its value is bounded by some flxed constant β. Hence

$$
(k+1)\left\|v_{k+1}\right\|<\gamma R^{-k}+\alpha \tau_{p} \beta \beta r^{-k}<r^{-k}(\gamma+\alpha \tau m \beta),
$$

and thus, assuming $\eta \geq \gamma$,

$$
\left\|v_{k+1}\right\|<r^{-(k+1)} \frac{r\left(\gamma+\alpha \tau_{\mu} \beta\right)}{k+1} \leq \pi r^{-(k+1)} \frac{r(1+\alpha m \beta)}{k+1} .
$$

Now for large enough k, say for $k>K$, the ugly fraction in the last formula will be smaller than 1, and we will have proven Equation (il) for $j=k+1$. We still need to make sure that Equation [] holds for $j \leq K$. But this places only flnitely many conditions on η, so we just need to pick η so that

$$
\eta>\max \left(\gamma, r^{j}\left\|v_{j}\right\|\right)_{j \varsigma K}
$$

Dror Ber-Natan, Nowmber 19, 2012; [bttp://drorbn. nat/1ndex.php?tit10=12-267.
Sources at Hittp://drortn.net/ACaden1CPans1ava/C1assos/12-267/.

