HW6 on web by midnight.
Riddle along: A game: Player A writes the numbers 1-18 on the faces of three blank dice, to her liking. Player B takes one of the 3 dice. Player B takes one of the remaining two, and throws away the third. Player A and B then play 1,000 rounds of "dice war" with the dice they hold. Whom would you rather be, player A or player B?

Phage portraits: First philosophy, then follow hand ont.
cases. I Two different real oignovipurs

$$
\begin{aligned}
& \lambda_{1}<\lambda_{2}<0 \\
& \lambda_{1} \leqslant \lambda_{2}=0 \\
& \lambda_{1}<0<\lambda_{2} \\
& \lambda_{1}=0<\lambda_{2} \\
& 0<\lambda_{1}<\lambda_{2}
\end{aligned}
$$

II Complex eignovelues.

$$
\operatorname{Re}(\lambda)>0 \quad \operatorname{Re}(\lambda)=0
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { PP [A_] :- Show [Vectorplot }\left[\text { A. }\binom{x}{y},\{x,-1,1\},\{y,-1,1\}, \text { Frame }+ \text { Move }\right]
\end{array} \\
& \text { Paxamatricniot[Table[MatrixExp[ta] } \left.\cdot\binom{\operatorname{Cos}[\theta]}{\sin [\theta]},\{\theta, \pi / 4,2 \pi, \pi / 4\}\right] \text {, } \\
& [t,-\pi, \pi\}, \text { ColorPunction } \rightarrow(\text { Red } s)] \text {. } \\
& \text { Imagosiza }+150 \text {] } \\
& \mathrm{PR} / \mathbf{0}\left\{\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\}
\end{aligned}
$$

$P D / 0\left\{\left(\begin{array}{cc}-2 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)\right\}$

$P D / 0\left\{\left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right) \cdot\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \cdot\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\}$

IIL One real lignenvalue w/ two eignevertors

$$
\lambda>0 \text { most } \bar{\lambda} \text { Pursing } \hat{0}<0
$$

IV One real eigneralue, just one eigvec

$$
\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right) \sim\left(\begin{array}{cc}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right)
$$

Now the quadratic case?
The non-homogencous case, using diagonalitation.

$$
\begin{aligned}
& v^{\prime}=A v+g(t) \quad \text { set } \quad v=c \cdot u \quad u=C^{-1} v \\
& C u^{\prime}=A C_{1}^{\prime} u+g(t) \\
& u^{\prime}=C^{-1} A C u+C^{-1} g(t)=D u+C^{-1} g
\end{aligned}
$$

if $C^{-1} A C=D$ is diagonal, this is a decoupled system.
Example

$$
V^{\prime}=\left(\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right) v+\binom{t^{-1}}{2 t^{-1}+4}
$$

$$
\begin{aligned}
& D=\left(\begin{array}{cc}
0 & 0 \\
0 & -5
\end{array}\right) \quad C=\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right) \quad C^{-1}=\frac{1}{5}\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right) \\
& u^{\prime}=\left(\begin{array}{cc}
0 & 0 \\
0 & -5
\end{array}\right) u+\frac{1}{5}\binom{5 / t+8}{4} \\
& u_{1}^{\prime}=1 / t+\frac{1}{5} \quad u_{1}=\log t+\frac{8}{5} t+C_{1} \\
& u_{2}^{\prime}=-5 u+\frac{y}{5} \quad u_{2}=\frac{4}{25}+c_{2} l^{-5 t} \\
& v=c \cdot u=\ldots
\end{aligned}
$$

