$$
e^{t A}:=\sum_{k=0}^{\infty} \frac{t^{k} A^{k}}{k!}
$$

1. Convoy gas
2. $l^{0}=I$
3. $\exp \left(\operatorname{ding}\left(\lambda_{i}\right)\right)=\operatorname{diag}\left(e^{\lambda_{i}}\right)$
4. $A B=B A \Rightarrow e^{A+B}=e^{A} e^{B}$
$5 e^{(t+S) A}=e^{+A} e^{5 A} \quad$ 6. $\frac{d}{d t} e^{+A}=A e^{+A}$
5. $\quad e^{C^{-1} D C}=C^{-1} e^{D} c$

Example Solve

$$
\begin{array}{ll}
\dot{x}=4 x-6 y & x(0)=2 \\
\dot{y}=3 x-5 y & y(0)=-1
\end{array}
$$

In general, dingonalization works at least when the
characteristic poly. has n distinct roots
Thm (Jordan canonical form) If T:V $\rightarrow V$ is a linear transformation [over $\mathbb{C}]$, then There is a b sis $\beta=\left(v_{1} \ldots v_{n}\right)$ of V sit.

$$
\begin{aligned}
& B_{i}=\left(\begin{array}{ccc}
\lambda 1 & & 0 \\
& \ddots & \ddots \\
0 & \ddots & 1
\end{array}\right)
\end{aligned}
$$

Exponentiate $(\lambda I+J)$
Example solve

$$
\dot{x}=2 x-4 \quad x(0)=2
$$

$$
\begin{array}{rl}
\dot{x}=3 x-y & x(0)=2 \\
\dot{y}=x+y & y(0)=-1
\end{array}
$$

Complex eigenvalues in tutorial. done line

Phage portraits: First philosophy, then follow hand ont.

Distribute TT at
end!

Pensive hasjar: Piloting Phase Profile n.

Paramatricpiot [Table[$\left.\operatorname{Matrixaxp}[t \operatorname{ta}] \cdot\binom{\operatorname{Cos}[\theta]}{\sin [\theta]},\{\theta, \pi / 4,2 \pi, \pi / 4\}\right]$, $\{t,-\pi, \pi\}$, ColorFunction $\rightarrow($ Rad $s)]$.
Imagosize \rightarrow 150]
$\operatorname{PP} / \bullet\left\{\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right) \cdot\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) \cdot\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$

$\mathrm{pp} / 0\left\{\left(\begin{array}{cc}-2 & 0 \\ 0 & -1\end{array}\right) \cdot\left(\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right) \cdot\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)\right\}$
 $\mathbb{P E} / \bullet\left\{\left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right) \cdot\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \cdot\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\}$

