HW5 is on web!

TT results: Discussion at end.

3.
$$\exp(\operatorname{Jiag}(\lambda_i)) = \operatorname{Jiag}(\ell^{\lambda_i})$$

4. $AB = BA = \int \ell^{A+B} = \ell^{A} \ell^{B}$
 $\int \ell^{t+s} A = \ell^{t+a} \ell^{sA} = \ell^{t+a} \ell^{t+a} = A\ell^{t+a}$
7. $\ell^{t-1}DC = \ell^{t-1}\ell^{D}C$

Example Solve

$$\dot{x} = 4x - 6y$$
 $x(0) = 2$
 $\dot{y} = 3x - 5y$ $y(0) = -1$

In general, dingonalitation works at last when the Out[4]= $\left\{ \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix} \right\}$

 $ln[1] = D1 = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}; D2 = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}; CC = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix};$ Inverse[CC] // MatrixForm

board

In[3]:= MatrixForm /@ {D1, CC.D1.Inverse[CC]}

Out[3]=
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}, \begin{pmatrix} 4 & 3 \\ -6 & -5 \end{pmatrix} \right\}$$

In[4]:= MatrixForm /@ {D2, CC.D2.Inverse[CC]}

Out[4]=
$$\left\{ \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix} \right\}$$

charactoristic poly. has n distinct voots

Thm (Jordan canonical form) If T: V-) V is a linear transformation [over C], then There is a basis Be(Vi... vn) OF V s.t.

$$D = \begin{bmatrix} T \end{bmatrix}_{\beta} = \begin{bmatrix} B_1 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & B_3 \end{bmatrix}$$

$$B_{i} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$

Exponentiate (XI+J)

Example solve = 2x - y $\times (0) = 2$

 $\hat{x} = 3x - y$ x(0) = 2 $\hat{y} = x + y$ y(0) = -1Complex eigenvalues in tytorial. done Phase portraits: First philosophy, Then Follow Pensieve header: Ploting Phase Profiles. $\mathtt{PP}\big[\underline{\mathbb{A}}_{_}\big] \; := \; \mathtt{Show}\Big[\mathtt{VectorPlot}\Big[\underline{\mathbb{A}}_{_}\left(\frac{x}{y}\right), \; \{x,\, -1,\, 1\}, \; \{y,\, -1,\, 1\}, \; \mathtt{Freme} \; + \; \mathtt{None}\Big] \; ,$ $\label{eq:parametricPlot} \begin{aligned} & \operatorname{ParametricPlot} \big[\operatorname{Table} \big[\operatorname{MatrixExp} \left[\operatorname{t.A.} \right] \cdot \begin{pmatrix} \operatorname{Cos} \left[\theta \right] \\ \operatorname{Sin} \left[\theta \right] \end{pmatrix}, \; \left\{ \theta, \; \pi/4, \; 2\pi, \; \pi/4 \right\} \big], \end{aligned}$ $\{t, -\pi, \pi\}$, ColorFunction \rightarrow (Red a), hand out. $\mathbb{PP} \, / \, \mathbf{0} \, \left\{ \left(\begin{array}{cc} -\mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{array} \right), \, \left(\begin{array}{cc} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right), \, \left(\begin{array}{cc} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{array} \right) \right\}$ Distribute Ti endj $\mathbb{PP} \, / \Phi \, \left\{ \left(\begin{array}{cc} -1 & -1 \\ 1 & -1 \end{array} \right), \, \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right), \, \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right), \, \left(\begin{array}{cc} 3 & -1 \\ 1 & 3 \end{array} \right), \, \left(\begin{array}{cc} 1 & -2 \\ 2 & 1 \end{array} \right) \right\}$ $\mathbb{PP} \, / \, \mathbf{0} \, \left\{ \left(\begin{array}{cc} -\mathbf{1} & \mathbf{1} \\ \mathbf{0} & -\mathbf{1} \end{array} \right) , \, \left(\begin{array}{cc} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{array} \right) , \, \left(\begin{array}{cc} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} \end{array} \right) \right\}$