Wiki pages and files must begin with 12-267! HW5 is on web!
TT results hopefully tomorrow.
Read Along: BDP Chapter 7.
Systems of CC. lin.hom. ODES $\quad y^{\prime}=A y \quad y(0)=y$.
$\begin{array}{ll}\text { Sul'n } & y(x)=e^{A x} \cdot y_{0} \\ \text { Define } & e^{+A}=\sum_{n=0}^{\infty} \frac{1}{n!} t^{n} A^{n}\end{array}$
properties 1. Converges! [from this point, no worry
2. $e^{O A}=I$
3. $e^{\left(\lambda_{1}, \lambda_{n}\right)}=\left(e^{\lambda /} \ddots e^{\lambda_{n}}\right)$ a bout convergence]
4. Satisfies $\left(e^{+A}\right)^{\prime}=A e^{+A}$
5. $\quad l^{A+B}=l^{A} l^{B}$ whenever $A B=B A$.
6. $e^{(t+5) A}=e^{+A} e^{S A}$
$7 . \quad e^{C^{-1} A C}=C^{-1} l^{A} C$
done
8. (later) $\exp (\lambda I+J)=\ldots$
\Longrightarrow Totally computable V
Example Solve

$$
\begin{array}{ll}
\dot{x}=4 x-6 y & x(0)=2 \tag{array}\\
\dot{y}=3 x-5 y & y(0)=-1
\end{array}
$$

$\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$

In general, dingonalization works at least when the Out $[3]=\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right),\left(\begin{array}{cc}4 & 3 \\ -6 & -5\end{array}\right)\right\}$ Oniffle $\left.\left\{\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right),\left(\begin{array}{ll}3 & 1 \\ -1 & 1\end{array}\right)\right\}$
characteristic poly. has n distinct roots Thm (Jordan canonical form) If T:V $\rightarrow V$ is a linear transformation $[$ over $\mathbb{C}]$, then

There is a basis $\beta=\left(v_{1} \ldots v_{n}\right)$ of V sit.

$$
D=\left[\begin{array}{ll}
T
\end{array}\right]_{\beta}=\left(\begin{array}{c|cc}
\hline B_{1} & 0 & 0 \\
0 & B_{2} & 0 \\
0 & 0 & B_{3}
\end{array}\right) \quad B_{i}=\left(\begin{array}{cc}
\lambda 1 & 0 \\
& \ddots \\
0 & \ddots \\
\hline
\end{array}\right)
$$

Exponentiate $(\lambda I+J)$
Example solve

$$
\begin{array}{ll}
\dot{x}=3 x-y & x(0)=2 \\
\dot{y}=x+y & y(0)=-1
\end{array}
$$

