TT. Friday Oct. 26 9-10 @ GB4O4
... a par tidal sample test is on webs
Read Along. BDP 3.1, 3.3-3.5,7
Riddle Along: 123456789
Two players alternate drawing cards from the above deck. The first player to have 3 cards that add up to 15 , wins. Would you like to be the first to move or the second? (More on today's web, including a video link).

Reminder: $P \in \mathbb{R}[\alpha], D=\frac{d}{d x}$, solve $P(D) \phi=0$; expect an n-dim V s. of solons.

$$
P(D) e^{\alpha x}=P(\alpha) l^{\alpha x}
$$

If p has n distinct roots, rial or compos, ok.
If P has a multiple root; i.e.

$$
y^{\prime \prime}-2 y^{\prime}+y=0 \ldots
$$

Differentiate $P(D) e^{\alpha x}=P(\alpha) e^{\alpha x}$ w.r.t. α :

$$
\begin{aligned}
& P(D)\left(x e^{\alpha x}\right)=\left(p^{\prime}(\alpha)+x p(\alpha)\right) e^{\alpha x} \\
& P(D)\left(x^{2} e^{\alpha x}\right)=\left(p^{\prime \prime}+2 x p^{\prime}+x^{2} p\right) e^{\alpha x}
\end{aligned}
$$

Alternatively, "reduction of order": If you know one solution of a $2^{\text {nd }}$ order homogeneuss liner ODE, finding the $z^{\text {ni }}$ reduces to a st order hl ODE: $y^{\prime \prime}+p y^{\prime}+q y=0$. p,q functions, y_{1} a sol'n.

Try $y=y_{1} \cdot v$, get

$$
y_{1}^{\prime \prime} \forall+2 y_{1}^{\prime} v^{\prime}+y_{1} v^{\prime \prime}+p y_{1}^{\prime} v+p y_{1} v^{\prime}+q y_{1} v=0
$$

pst order h.l. ODE for V^{\prime}.
Exurases. 1. Check that this give the same ansurs.
2. How is this related to the algebra "reduction of order" for alg. equ's?

Non homogeneous can's by "undetar mined coeffs":
Examples. 1. $y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin x \quad \alpha_{1,2}=4,-1$
Sol'n $y=\frac{1}{17}(3 \cos x-5 \sin y)$ $\frac{\text { dons }}{\text { line }}$
2. $y^{\prime \prime}-3 y^{\prime}-4 y=4 x^{2}$ soln $y=-x^{2}+3 / 2 x-\frac{13}{8}$
3. $y^{\prime \prime}-4 y=x e^{x}+x e^{2 x}$
$x e^{x}:$ no problum.
$x e^{2 x}$: guess $\left(A x^{2}+B x\right) l^{2 x}$
In general, this works if RHS is a polynomial times an "exponential".

Even bettor, do systems: $y^{\prime}=A y \quad y(0)=y$.
Sol'n $\quad y(x)=e^{A x} \cdot y_{0}$
What's $e^{A x}$?
Continue?

