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1. Introduction

Example 1.1. Bessel’s equation of order 0:

8J0< = NDSolve@
x2 y''@xD + x y'@xD + x2 y@xD � 0

&& y@1D � 1 && y'@1D � 0,

y@xD, 8x, 1, 50<
D;

Plot@Evaluate@y@xD ê. J0D, 8x, 1, 50<D
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x2y′′ + xy′ + x2y = 0

• Why does it oscillate?
• What does the “period” approach?
• What does the “amplitude” ap-

proach?

A power series, or a numerical approxi-
mation, won’t help!
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2. Regular Singular Points

Ferdinand Georg

Frobenius, 1849–

1917, Oberwolfach
image

Suppose 0 is a regular singular point of the equation

(1) x2y′′ + xp(x)y′ + q(x)y = 0.

(Meaning simply that p and q above have a power series expansion around
0). Let p0 = p(0) and q0 = q(0), and let r1 and r2 be the roots of the indicial
equation r(r − 1) + p0r + q0 = 0 (if they are real and distinct, assume also
that r1 > r2). Then for x > 0 Equation (1) has two linearly independent
solutions y1 and y2, such that

y1 = xr1

(
1 +

∞∑
n=1

anx
n

)

and

y2 =


y1 log x+ xr

∑∞
n=1 bnx

n r1 = r2 = r

cy1 log x+ xr2 (1 +
∑∞

n=1 bnx
n) r1 − r2 = N ∈ N>0

xr2 (1 +
∑∞

n=1 bnx
n) otherwise.

This can be used to deduce qualitative information! The behaviour near 0 of a power
series is dominated by its 0th term. The cases are:

y ∼


axr1 + bxr2 r1 − r2 ∈ R \ Z
xα(a cos(β log x) + b sin(β log x)) r1,2 = α + iβ ∈ C \ R
xr(a+ b log x) r1 = r2 = r

xr1(a+ bc log x) + bxr2 r1 − r2 ∈ N>0

Example 2.1. Bessel’s equation of order α,

y′′ +
1

x
y′ +

(
1− α2

x2

)
= 0,

has indicial equation r(r − 1) + r − α2 = 0 whose solutions are r1,2 = ±α. Here are a few
possibilities:

2

http://owpdb.mfo.de/detail?photo_id=10587
http://owpdb.mfo.de/detail?photo_id=10587


GraphicsGridBPartitionBTableB

PlotB8BesselJ@Α, xD, BesselY@Α, xD<, 8x, 0, 1<,

AxesLabel ® Automatic, PlotPoints ® 100,

PlotLabel ® StringReplaceB"y'' +
1

x
y' + H1-

Α
2

x2
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"Α" ® ToString@ΑDFF,
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Example 2.2. The equation

y′′ − 3y′ +

(
13

2x2
+ cosx

)
y = 0

has r1,2 = 1
2
± 5

2
i.

Sol = NDSolveA
y''@xD - 3 y'@xD + I 13

2 x2
+ Cos@xDM y@xD � 0 &&

y@1D � 1 && y'@1D � 0,

y@xD, 9x, Ε = 10-9, 1=
E;

Plot@Evaluate@y@xD �. SolD, 8x, Ε, 1<, PlotPoints ® 1000D
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Exercise 2.1. Determine the behaviour near x = 0 of solutions of the equation

y′′ +

(
1

2x2
+

1

2(1− x2)

)
y = 0.

Exercise 2.2. Using the change of variable t = 1/x, study the be-
haviour of Legendre’s equation of order α,

(1− x2)y′′ − 2xy′ + α(α + 1)y = 0,

for large x and for all real α.
Adrien-Marie

Legendre

Exercise 2.3. Find the general solution of Legendre’s equation of order α = 0,

(1) using power series, and,
(2) explicitly,

and determine the behaviour of these solutions as x→∞.

Exercise 2.4. Show that x = 0 is a regular singular point of the equation

x3y′′ + 2(1− cosx)y′ + (sinx)y = 0

and study the qualitative behaviour of its solutions near that point.

Exercise 2.5. Show that for any non-zero value of the constant β, the point x = ∞ is a
regular singular point of the equation

x2y′′ + 2xy′ + βy = 0.

Study the behaviour of this equation near x =∞ for β = −3
4
, 3
16
, 1
4
, 5
4
. What if β = 0?

Exercise 2.6. Show that x =∞ is not a regular singular point for the constant-coefficient
equation y′′ + ay′ + by = 0 for any values of a and b (except a = b = 0).

3. The Basic Oscillation Theorems

Theorem 3.1. If q(x) < 0 for every x in some connected
subset I of R, then any solution of y′′ + qy = 0 may have at
most one zero on I.

Example 3.1. Consider the solutions of y′′ − y = 0 with
y(0) = 1 and y′(0) = c, for c ∈ {1, 0,−0.9,−1,−2}.

Plot@Evaluate@Table@
y@xD �.

DSolve@y''@xD - y@xD � 0

&& y@0D � 1 && y'@0D � c,

y@xD, xD,

8c, 81, 0, -0.9, -1, -2<<
DD, 8x, 0, 2<, AspectRatio ® 2D
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Exercise 3.1. Solve the equation y′′ + 3
16x2

y = 0, and decide if its solutions ever oscillate.

Theorem 3.2. If q(x) is continuous and q(x) > 0 for all x ≥ A and if
∫∞
A
q(x)dx = ∞,

then any solution to y′′ + qy = 0 has infinitely many zeros for x ≥ A.

Proof. Suppose not. Then there is a solution y for which y(x) > 0 for all x ≥ B, for some
B ≥ A. If we had y′(C) ≤ 0 for some C > B, then as y′′ < 0 and therefore y′ is decreasing,
we’d have that y′(x) < 0 for all x > C, and therefore there is some x > C with y(x) = 0. So

it must be that y′(x) > 0 for all x ≥ B. Now consider V (x) := −y′(x)
y(x)

. We already know it

is negative for all x ≥ B. Yet

V ′ = −y
′′y − y′2

y2
=
qy2 + y′2

y2
= q + V 2,

and hence

V (x) = V (B) +

∫ x

B

V ′(t)dt = V (B) +

∫ x

B

V 2dt+

∫ x

B

qdt.

But as
∫∞
B
q(t)dt is divergent, the above quantity will become positive for large enough x,

contradicting the negativity of V (x). �

Example 3.2. Solutions of Airy’s equation y′′ + xy = 0 oscillate for positive x but do not
oscillate for negative x:

Ai1 = NDSolve@y''@xD + x y@xD � 0 && y@0D � 1 && y'@0D � 0,

y@xD, 8x, -3, 10<D;

Ai2 = NDSolve@y''@xD + x y@xD � 0 && y@0D � 0 && y'@0D � 1,

y@xD, 8x, -3, 10<D;

Ai = Join@Ai1, Ai2D

88y@xD ® InterpolatingFunction@88-3., 10.<<, <>D@xD<,

8y@xD ® InterpolatingFunction@88-3., 10.<<, <>D@xD<<
Plot@Evaluate@y@xD �. AiD, 8x, -3, 10<D
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George Biddell Airy,
1801–1892
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In the other direction, we have the following:

Theorem 3.3. Let A > 0 be given. If q(x) is continuous and q(x) > 0 for all x ≥ A and if∫∞
A
xq(x)dx <∞, and if y is a solution of y′′ + qy = 0, then

(1) There is some B > A beyond which y has no zeros.
(2) There is a constant K such that

lim
x→∞

y′(x) = K = lim
x→∞

y(x)

x

Comment 3.3. I could not prove or find a counterexample to the statement that above, K
is always non-zero. If this is true then the first statement above is superfluous as it would
immediately follow from the second. I didn’t have time to consult with the references, [CL,
page 103, problem 28] and [Co, page 92 Theorem 3].

Proof. Find C > A such that
∫∞
C
xqdx < 1, and assume that y has at least two zeros

beyond C; let a be the first of those and let b be the second. Let α = y′(a); without loss
of generality we may assume that α > 0. Then y′(b) < 0 and by convexity we have that on
[a, b], y(x) ≤ α(x− a) < αx. So

α ≤ y′(a)− y′(b) = −
∫ b

a

y′′(x)dx =

∫ b

a

yqdx ≤
∫ b

a

αxqdx ≤ α

∫ ∞
C

xqdx < α,

a contradiction. Therefore y cannot have two further zeros beyond B, and (1) is proven.
Now we know that beyond some point D, y is non-zero. Without loss of generality it is

positive and therefore convex. It therefore lies below any of its tangents, and therefore on
[D,∞] it is bounded by some linear function βx. Hence for any a < b in [D,∞],

|y′(a)− y′(b)| =
∣∣∣∣∫ b

a

y′′dx

∣∣∣∣ =

∫ b

a

yqdx ≤
∫ b

a

βxqdx ≤ β

∫ ∞
a

xqdx,

and the last integral goes to 0 when a → ∞. Hence y′(x) is a “Cauchy function” (the
“function” analog of a “Cauchy sequence”), and hence it converges to some limit K. The
rest follows from L’Hôpital. �

Exercise 3.2. Show that solutions of y′′+(log x)y = 0 oscillate as x→∞, yet have at most
one zero for 0 < x < 1.

Exercise 3.3. Determine the behaviour of solutions of y′′ + x2−2
x2(x2+1)2

y = 0 as x→∞.

Exercise 3.4. What do the above theorems say about the behaviour of solutions of y′′+ y
x2

=
0 near ∞? What is their actual behaviour?

Exercise 3.5. Show that all solutions of y′′ + xαy = 0 are oscillatory for x > 1 if α > −1.
For what value of α does Theorem 3.3 apply to determine the large x behaviour of such
solutions?

Exercise 3.6. Let y be the solution of

y′′ + (x2 − 1)1/3y = 0, y(0) = 0, y′(0) = 1.

Does y(x) have other zeros for −∞ < x <∞? Does it have infinitely many? What intervals
a < x < b cannot contain any other zeros?
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Exercise 3.7. How do solutions of

y′′ +
1

(t2 + 1)3/2
y = 0

behave as t→∞? As t→ −∞?

4. Changes of Variables

4.1. Changing the Dependent Variable. If y satisfies y′′ + p(x)y′ + q(x)y = 0 and we
set y = µ(x)V , where µ satisfies 2µ′ + pµ = 0, then V satisfies V ′′ + Q(x)V = 0, where
Q = q − 1

4
p2 − 1

2
p′. The good news is that V has exactly the same zeros as y, so the

“frequency” of the oscillatory behaviour of y may be studied by studying V ′′ +Q(x)V = 0.
Though note that “amplitudes” are modified.

Example 4.1. For Bessel’s equation of order
0, y′′+ 1

x
y′+y = 0, which appeared here in Ex-

ample 1.1, setting V =
√
xy yields the equa-

tion V ′′ +
(
1 + 1

4x2

)
V = 0, which oscillates by

Theorem 3.2:

8V0< = NDSolveA
V''@xD + I1 +

1

4 x2
M V@xD � 0

&& V@1D � 1 && V'@1D � 1 ê 2,

V@xD, 8x, 1, 50<
E;

Plot@Evaluate@8y@xD ê. J0, V@xD ê. V0<D, 8x, 1, 50<D
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4.2. Changing the Independent Variable. If y satisfies y′′ + p(x)y′ + q(x)y = 0 and we
set z = ν(x), where ν satisfies ν ′′ + pν ′ = 0, then the equation becomes

d2y

dz2
+Q(z)y = 0, where Q(z) =

q(x(z))

[ν ′(x(z))]2
.

The zeros of y get moved by this transformation, so studying the oscillatory behaviour of y(x)
as x → ∞ corresponds to studying the oscillatory behaviour of y(z) as z → limx→∞ ν(x),
and the latter point may or may not be∞. Note though, that the amplitudes of oscillations
(if they occur), are unchanged.

Exercise 4.1. Bring the Bessel equation of order 0 to the form d2y
dz2

+Q(z)y = 0 by a change
of the independent variable and verify once more that its solutions oscillate as x→∞.

Exercise 4.2. Try to determine the behaviour of solutions of the equation y′′+y′/x+y/x3 =
0 as x → ∞, first by a change of the dependent variable and then by a change of the
independent variable.
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Example 4.2. Under the change of independent variable z(x) = x3/3, the equation y′′ −
2
x
y′ + y = 0 becomes the equation d2y

dz2
+ 1

(3z)4/3
y = 0:

a = 50; b = 40;

Ψ = NDSolveA
y''@xD -

2

x
y'@xD + y@xD � 0

&& y@1D � 1 && y'@1D � 0,

y@xD, 8x, 1, a<
E;

Plot@Evaluate@y@xD �. ΨD,

8x, 1, a<, PlotRange ® 8-b, b<D
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Ψ = NDSolveB

y''@zD +
1

H3 zL4�3
y@zD � 0

&& y@1 � 3D � 1 && y'@1 � 3D � 0,

y@zD, 9z, 1, a3 � 3=
F;

PlotAEvaluate@y@zD �. ΨD,

9z, 1, a3 � 3=, PlotRange ® 8-b, b<E

10 000 20 000 30 000 40 000

-40
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Exercise 4.3. For each of the following equations, decide whether their solutions oscillate
for large x (here n > 0):

(1) x2y′′ + xy′ + y = 0.
(2) xy′′ + (1− x)y′ + ny = 0.
(3) y′′ − 2xy′ + 2ny = 0.
(4) xy′′ + (2n+ 1)y′ + xy = 0.

Exercise 4.4. (1) Study whether solutions of x2y′′ − xy′ + 5y = 0 oscillate as x → ∞
and as x→ −∞.

(2) Do the same for x2y′′ − 4xy′ + (6− x)y = 0.

Exercise 4.5. Are there any values of k for which solutions to (1 − x)y′′ − xy′ + ky = 0
oscillate as x→∞?

Exercise 4.6. How do solutions of

x(x− 1)y′′ + (3x− 1

2
)y′ + y = 0

behave as x→∞?

Exercise 4.7. How do solutions of

y′′ +
1

x2
y′ +

1

4x4
y = 0

behave as x→∞?
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5. The Sturm Comparison Theorem

Charles Sturm,
1803–1855

Theorem 5.1. (The Sturm Comparison Theorem) Suppose y1 satisfies
y′′1 + q1y1 = 0 and y2 satisfies y′′2 + q2y2 = 0 and suppose q2 > q1 in some
interval. Then in the open interval between any two zeros of y1 there is a
zero of y2 (hence y2 oscillates more rapidly than y1).

Proof. Consider W (x) := y1(x)y′2(x)− y2(x)y′1(x). Then

W ′ = y1y
′′
2 − y2y′′1 = (q1 − q2)y1y2.

Now argue by contradiction. Suppose a and b are successive zeros of
y1, and a < b, and that y2 has no zeros on (a, b). On (a, b) the solution
y1 is non-zero; without loss of generality, it is positive. This implies that y′1(a) > 0 and
y′1(b) < 0. Also without loss of generality, y2 > 0 on (a, b). Then by the above equality
and by q1 < q2, it follows that W is decreasing on (a, b). Yet W (a) = −y2(a)y′1(a) ≤ 0 and
W (b) = −y2(b)y′1(b) ≥ 0. �

Corollary 5.1. Assuming y′′+ qy = 0, if q is increasing the the distance between successive
zeros of y is decreasing, and if q is decreasing then the distance between successive zeros of
y is increasing.

Proof. Assume for example that q is increasing, and that a < b and c < d are two pairs of
successive zeros of y, with c > a. Then y1(x) := y(x + c − a) solves y′′1 + q1y1 = 0, where
q1(x) := q(x+ c−a), and quite clearly, a and d+a− c are successive zeros of y1. But q1 > q,
and for y, the next zero after a is b, meaning that the next zero of y1 must come before b.
Namely, d+ a− c < b, or alternatively, d− c < b− a, as required. �

Example 5.2. As we have seen in Example 4.1 the Bessel equation of order 0 is equivalent
to the equation V ′′ +

(
1 + 1

4x2

)
V = 0. Hence the distance between successive zeros of the

Bessel equation of order 0 is increasing and by comparison with v′′ + v = 0, it converges to
π:
zs = x �. Table@FindRoot@y@xD �. J0, 8x, Λ<D, 8Λ, 2.8, 50, 3.14<D
82.91009, 6.03123, 9.16593, 12.3041, 15.4436, 18.5839, 21.7245, 24.8654,

28.0064, 31.1475, 34.2888, 37.43, 40.5714, 43.7127, 46.8541, 49.9956<
Table@zs@@j + 1DD - zs@@jDD, 8j, 1, 15<D
83.12114, 3.1347, 3.13816, 3.13954, 3.14023, 3.14062, 3.14087,

3.14103, 3.14114, 3.14123, 3.14129, 3.14133, 3.14137, 3.1414, 3.14143<
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Example 5.3. Solutions of Euler’s equation x2y′′ + γy = 0 oscillate for γ > 1
4

but do not

oscillate for γ ≤ 1
4
:

Corollary 5.4. Suppose there exist numbers γ > 1
4

and A such that for all x ≥ A we have
q(x) > γ

x2
. Then every solution of y′′ + qy = 0 oscillates infinitely often for x > A. However

if for all x ≥ A we have q(x) ≤ γ
4x2

, then solutions of y′′ + qy = 0 have at most one zero for
x ≥ A.

Exercise 5.1. Construct an equation y′′+
qy = 0 whose solutions oscillate, yet so
slowly that even the above corollary would
not detect these oscillations. [Note that
any such equation can be used as a finer
comparison criterion than the one in the
corollary].

Hint. Change the independent vari-
able to slow things down, and then the
dependent variable to bring them back
to the right form.
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Exercise 5.2. What can you say about the spacing of the zeros of the following equations:

(1) y′′ + (x2 − 1)1/3y = 0.
(2) y′′ − (x− x3)y = 0.

Exercise 5.3. Let y be a solution of Bessel’s equation of order α:

y′′ +
1

x
y′ +

(
1− α2

x2

)
y = 0.

(1) Show that if α2 < 1
4

then successive zeros of y are separated by less than π.

(2) Show that if α2 > 1
4

then successive zeros of y are separated by more than π.

(3) What if α2 = 1
4
?

Exercise 5.4. Show that all solutions of y′′ +
(

1
4x2

+ e−x
)
y = 0 do not oscillate.

Exercise 5.5. Study the x→∞ behaviour of solutions of y′′ + 3
x
y′ +

(
1
x2
− 1

2x4

)
y = 0.

Exercise 5.6. For which values of k to all solutions of (x2− 1)y′′+ xy′+ ky = 0 oscillate as
x→∞?

Exercise 5.7. Prove that if q(x) → L > 0 as x → ∞, then the spacing between successive
zeros of solutions of y′′ + qy = 0 converges to π√

L
as x→∞.

Exercise 5.8. Prove the “Sturm Separation Theorem”: If y1 and y2 are two linearly inde-
pendent solutions of the same equation y′′ + p(x)y′ + q(x)y = 0, then their zeros alternate.
Namely, between any two zeros of y1 there is a zero of y2 and between any two zeros of y2
there is a zero of y1.

6. Amplitudes

Theorem 6.1. Consider a solution y of the equation y′′ + py′ + qy = 0. If q > 0 and
q′ + 2pq > 0 on some interval [a, b] and y′(a) = 0 = y′(b), then |y(a)| > |y(b)|. If instead
q′ + 2pq < 0 and y′(a) = 0 = y′(b), then |y(a)| < |y(b)|. Similarly for non-strict inequalities.

Proof. Consider F = y2 + (y′)2

q
and note that F ′ = −(q′ + 2pq) (y

′)2

q2
. �

Example 6.1. For Bessel’s equation y′′+ 1
x
y′+(1−α2/x2)y = 0 we have q′+2pq = 2/x > 0,

and hence the amplitudes of its oscillations decreases on x > 0. Yet for y′′ + y/x2 = 0 we
have q′ + 2pq = −2

x3
< 0, and hence the amplitudes of its oscillations increases on x > 0.

Theorem 6.1 has the following “opposite” (really, strengthening):

Proposition 6.2. Under the same conditions as in the theorem, let P be some primitive of
p, meaning P ′ = p. Then

eP (a)
√
q(a)|y(a)| < eP (b)

√
q(b)|y(b)| if q′ + 2pq > 0,

and
eP (a)

√
q(a)|y(a)| > eP (b)

√
q(b)|y(b)| if q′ + 2pq < 0.

Proof. Use the auxiliary function G(x) = e2P (qy2 + (y′)2). �

Corollary 6.2. If y′′ + qy = 0 where q(x) → L > 0 monotonically as x → ∞, then y
oscillates as x→∞ with amplitudes that approach a finite, non-zero level.
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Exercise 6.1. Describe, as best as you can at this stage, the behaviour as x → ∞ of
solutions of the equation y′′ +

(
1− 2

x2

)
y = 0.

Example 6.3. Under the transformation v =
√
xy Bessel’s equation y′′+ 1

x
y+
(

1− α2

x2

)
y = 0

becomes the equation

v′′ +

(
1 +

1− 4α2

4x2

)
v = 0.

Thus we see that the oscillations of v increase if α < 1
2

and decrease if α > 1
2
. Further, they

approach a constant level — but this means that the oscillations of y decrease like 1√
x
.

More can and should be said, though perhaps not on this handout.

7. Irregular Singular Points

Behaviour of solutions near a finite irregular singular point x0 can sometimes be studied
by the change of variables t = 1/(x−x0). More can and should be said, though perhaps not
on this handout.
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x2y′′ + xy′ + (x2 − α2)y = 0
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