Qualitative Analysis

Based on a 1989 Princeton University handout by George Em Karniadakis.
This is a "first printing" and it is likely to contain many typos and other mistakes.

Contents

1. Introduction 1
2. Regular Singular Points 2
3. The Basic Oscillation Theorems 4
4. Changes of Variables 7
4.1. Changing the Dependent Variable 7
4.2. Changing the Independent Variable 7
5. The Sturm Comparison Theorem 9
6. Amplitudes 11
7. Irregular Singular Points 12
References 12

1. Introduction

Example 1.1. Bessel's equation of order 0:

```
{Jo} = NDSolve[
    x}\mp@subsup{x}{}{2}\mp@subsup{y}{}{\prime}'[x]+xy'[x]+\mp@subsup{x}{}{2}y[x]==
            && y[1] == 1 && y'[1] == 0,
        y[x], {x, 1, 50}
    ];
Plot[Evaluate[y[x] /. Jo], {x, 1, 50}]
```


$$
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0
$$

- Why does it oscillate?
- What does the "period" approach?
- What does the "amplitude" approach?
A power series, or a numerical approximation, won't help!

2. Regular Singular Points

Suppose 0 is a regular singular point of the equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0 \tag{1}
\end{equation*}
$$

(Meaning simply that p and q above have a power series expansion around $0)$. Let $p_{0}=p(0)$ and $q_{0}=q(0)$, and let r_{1} and r_{2} be the roots of the indicial equation $r(r-1)+p_{0} r+q_{0}=0$ (if they are real and distinct, assume also that $r_{1}>r_{2}$). Then for $x>0$ Equation (1) has two linearly independent solutions y_{1} and y_{2}, such that

Ferdinand Georg Frobenius, 18491917, Oberwolfach image

$$
y_{1}=x^{r_{1}}\left(1+\sum_{n=1}^{\infty} a_{n} x^{n}\right)
$$

and

$$
y_{2}= \begin{cases}y_{1} \log x+x^{r} \sum_{n=1}^{\infty} b_{n} x^{n} & r_{1}=r_{2}=r \\ c y_{1} \log x+x^{r_{2}}\left(1+\sum_{n=1}^{\infty} b_{n} x^{n}\right) & r_{1}-r_{2}=N \in \mathbb{N}_{>0} \\ x^{r_{2}}\left(1+\sum_{n=1}^{\infty} b_{n} x^{n}\right) & \text { otherwise }\end{cases}
$$

This can be used to deduce qualitative information! The behaviour near 0 of a power series is dominated by its 0th term. The cases are:

$$
y \sim \begin{cases}a x^{r_{1}}+b x^{r_{2}} & r_{1}-r_{2} \in \mathbb{R} \backslash \mathbb{Z} \\ x^{\alpha}(a \cos (\beta \log x)+b \sin (\beta \log x)) & r_{1,2}=\alpha+i \beta \in \mathbb{C} \backslash \mathbb{R} \\ x^{r}(a+b \log x) & r_{1}=r_{2}=r \\ x^{r_{1}}(a+b c \log x)+b x^{r_{2}} & r_{1}-r_{2} \in \mathbb{N}_{>0}\end{cases}
$$

Example 2.1. Bessel's equation of order α,

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{\alpha^{2}}{x^{2}}\right)=0
$$

has indicial equation $r(r-1)+r-\alpha^{2}=0$ whose solutions are $r_{1,2}= \pm \alpha$. Here are a few possibilities:

GraphicsGrid[Partition [Table[
$\operatorname{Plot}[\{\operatorname{Bessel} J[\alpha, \mathrm{x}], \operatorname{Bessel}[\alpha, \mathrm{x}]\},\{x, 0,1\}$,
AxesLabel \rightarrow Automatic, PlotPoints \rightarrow 100,
PlotLabel \rightarrow StringReplace $\left[" y^{\prime} '+\frac{1}{x} y^{\prime}+\left(1-\frac{\alpha^{2}}{x^{2}}\right) y=0 "\right.$,
" α " \rightarrow ToString $[\alpha]]]$,
$\{\alpha, 0 ., 1.5,0.5\}$
], 2]]

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{0^{2}}{x^{2}}\right) y=0
$$

$y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{1 \cdot{ }^{2}}{x^{2}}\right) y=0$

Example 2.2. The equation

$$
y^{\prime \prime}-3 y^{\prime}+\left(\frac{13}{2 x^{2}}+\cos x\right) y=0
$$

has $r_{1,2}=\frac{1}{2} \pm \frac{5}{2} i$.

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{0.5^{2}}{x^{2}}\right) y=0
$$

$y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{1.5^{2}}{x^{2}}\right) y=0$

Sol $=$ NDSolve $[$
$y^{\prime}[x]-3 y^{\prime}[x]+\left(\frac{13}{2 x^{2}}+\operatorname{Cos}[x]\right) y[x]=0 \& \&$ $y[1]==1 \& \& y^{\prime}[1]=0$, $\mathbf{y}[\mathbf{x}],\left\{\mathbf{x}, \epsilon=10^{-9}, 1\right\}$];
Plot[Evaluate[y[x] /. Sol], \{x, E, 1\}, PlotPoints \rightarrow 1000]

Exercise 2.1. Determine the behaviour near $x=0$ of solutions of the equation

$$
y^{\prime \prime}+\left(\frac{1}{2 x^{2}}+\frac{1}{2\left(1-x^{2}\right)}\right) y=0
$$

Exercise 2.2. Using the change of variable $t=1 / x$, study the behaviour of Legendre's equation of order α,

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0
$$

for large x and for all real α.

Exercise 2.3. Find the general solution of Legendre's equation of order $\alpha=0$,
(1) using power series, and,
(2) explicitly,
and determine the behaviour of these solutions as $x \rightarrow \infty$.
Exercise 2.4. Show that $x=0$ is a regular singular point of the equation

$$
x^{3} y^{\prime \prime}+2(1-\cos x) y^{\prime}+(\sin x) y=0
$$

and study the qualitative behaviour of its solutions near that point.
Exercise 2.5. Show that for any non-zero value of the constant β, the point $x=\infty$ is a regular singular point of the equation

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}+\beta y=0 .
$$

Study the behaviour of this equation near $x=\infty$ for $\beta=-\frac{3}{4}, \frac{3}{16}, \frac{1}{4}, \frac{5}{4}$. What if $\beta=0$?
Exercise 2.6. Show that $x=\infty$ is not a regular singular point for the constant-coefficient equation $y^{\prime \prime}+a y^{\prime}+b y=0$ for any values of a and b (except $a=b=0$).

3. The Basic Oscillation Theorems

Theorem 3.1. If $q(x)<0$ for every x in some connected subset I of \mathbb{R}, then any solution of $y^{\prime \prime}+q y=0$ may have at most one zero on I.

Example 3.1. Consider the solutions of $y^{\prime \prime}-y=0$ with $y(0)=1$ and $y^{\prime}(0)=c$, for $c \in\{1,0,-0.9,-1,-2\}$.

```
Plot[Evaluate[Table[
    y[x] /.
        DSolve[y''[x]-y[x] == 0
            && y[0] == 1 && y'[0] == c,
            y[x], x],
        {c, {1, 0, -0.9, -1, -2}}
    ]], {x, 0, 2}, AspectRatio }->2
```


Exercise 3.1. Solve the equation $y^{\prime \prime}+\frac{3}{16 x^{2}} y=0$, and decide if its solutions ever oscillate.
Theorem 3.2. If $q(x)$ is continuous and $q(x)>0$ for all $x \geq A$ and if $\int_{A}^{\infty} q(x) d x=\infty$, then any solution to $y^{\prime \prime}+q y=0$ has infinitely many zeros for $x \geq A$.
Proof. Suppose not. Then there is a solution y for which $y(x)>0$ for all $x \geq B$, for some $B \geq A$. If we had $y^{\prime}(C) \leq 0$ for some $C>B$, then as $y^{\prime \prime}<0$ and therefore y^{\prime} is decreasing, we'd have that $y^{\prime}(x)<0$ for all $x>C$, and therefore there is some $x>C$ with $y(x)=0$. So it must be that $y^{\prime}(x)>0$ for all $x \geq B$. Now consider $V(x):=-\frac{y^{\prime}(x)}{y(x)}$. We already know it is negative for all $x \geq B$. Yet

$$
V^{\prime}=-\frac{y^{\prime \prime} y-y^{\prime 2}}{y^{2}}=\frac{q y^{2}+y^{\prime 2}}{y^{2}}=q+V^{2}
$$

and hence

$$
V(x)=V(B)+\int_{B}^{x} V^{\prime}(t) d t=V(B)+\int_{B}^{x} V^{2} d t+\int_{B}^{x} q d t .
$$

But as $\int_{B}^{\infty} q(t) d t$ is divergent, the above quantity will become positive for large enough x, contradicting the negativity of $V(x)$.
Example 3.2. Solutions of Airy's equation $y^{\prime \prime}+x y=0$ oscillate for positive x but do not oscillate for negative x :

```
Ai1 = NDSolve[y''[x] + xy[x] == 0 && y[0] == 1 && y'[0] == 0,
    y[x], {x, -3, 10}];
Ai2 = NDSolve[y''[x] + xy[x] == 0&& y[0] == 0 && y'[0] == 1,
    y[x], {x, -3, 10}];
Ai = Join[Ai1, Ai2]
```


George Biddell Airy, 1801-1892

In the other direction, we have the following:
Theorem 3.3. Let $A>0$ be given. If $q(x)$ is continuous and $q(x)>0$ for all $x \geq A$ and if $\int_{A}^{\infty} x q(x) d x<\infty$, and if y is a solution of $y^{\prime \prime}+q y=0$, then
(1) There is some $B>A$ beyond which y has no zeros.
(2) There is a constant K such that

$$
\lim _{x \rightarrow \infty} y^{\prime}(x)=K=\lim _{x \rightarrow \infty} \frac{y(x)}{x}
$$

Comment 3.3. I could not prove or find a counterexample to the statement that above, K is always non-zero. If this is true then the first statement above is superfluous as it would immediately follow from the second. I didn't have time to consult with the references, CL, page 103, problem 28] and [Co, page 92 Theorem 3].
Proof. Find $C>A$ such that $\int_{C}^{\infty} x q d x<1$, and assume that y has at least two zeros beyond C; let a be the first of those and let b be the second. Let $\alpha=y^{\prime}(a)$; without loss of generality we may assume that $\alpha>0$. Then $y^{\prime}(b)<0$ and by convexity we have that on $[a, b], y(x) \leq \alpha(x-a)<\alpha x$. So

$$
\alpha \leq y^{\prime}(a)-y^{\prime}(b)=-\int_{a}^{b} y^{\prime \prime}(x) d x=\int_{a}^{b} y q d x \leq \int_{a}^{b} \alpha x q d x \leq \alpha \int_{C}^{\infty} x q d x<\alpha
$$

a contradiction. Therefore y cannot have two further zeros beyond B, and (1) is proven.
Now we know that beyond some point D, y is non-zero. Without loss of generality it is positive and therefore convex. It therefore lies below any of its tangents, and therefore on $[D, \infty]$ it is bounded by some linear function βx. Hence for any $a<b$ in $[D, \infty]$,

$$
\left|y^{\prime}(a)-y^{\prime}(b)\right|=\left|\int_{a}^{b} y^{\prime \prime} d x\right|=\int_{a}^{b} y q d x \leq \int_{a}^{b} \beta x q d x \leq \beta \int_{a}^{\infty} x q d x
$$

and the last integral goes to 0 when $a \rightarrow \infty$. Hence $y^{\prime}(x)$ is a "Cauchy function" (the "function" analog of a "Cauchy sequence"), and hence it converges to some limit K. The rest follows from L'Hôpital.
Exercise 3.2. Show that solutions of $y^{\prime \prime}+(\log x) y=0$ oscillate as $x \rightarrow \infty$, yet have at most one zero for $0<x<1$.

Exercise 3.3. Determine the behaviour of solutions of $y^{\prime \prime}+\frac{x^{2}-2}{x^{2}\left(x^{2}+1\right)^{2}} y=0$ as $x \rightarrow \infty$.
Exercise 3.4. What do the above theorems say about the behaviour of solutions of $y^{\prime \prime}+\frac{y}{x^{2}}=$ 0 near ∞ ? What is their actual behaviour?

Exercise 3.5. Show that all solutions of $y^{\prime \prime}+x^{\alpha} y=0$ are oscillatory for $x>1$ if $\alpha>-1$. For what value of α does Theorem 3.3 apply to determine the large x behaviour of such solutions?

Exercise 3.6. Let y be the solution of

$$
y^{\prime \prime}+\left(x^{2}-1\right)^{1 / 3} y=0, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

Does $y(x)$ have other zeros for $-\infty<x<\infty$? Does it have infinitely many? What intervals $a<x<b$ cannot contain any other zeros?

Exercise 3.7. How do solutions of

$$
y^{\prime \prime}+\frac{1}{\left(t^{2}+1\right)^{3 / 2}} y=0
$$

behave as $t \rightarrow \infty$? As $t \rightarrow-\infty$?

4. Changes of Variables

4.1. Changing the Dependent Variable. If y satisfies $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ and we set $y=\mu(x) V$, where μ satisfies $2 \mu^{\prime}+p \mu=0$, then V satisfies $V^{\prime \prime}+Q(x) V=0$, where $Q=q-\frac{1}{4} p^{2}-\frac{1}{2} p^{\prime}$. The good news is that V has exactly the same zeros as y, so the "frequency" of the oscillatory behaviour of y may be studied by studying $V^{\prime \prime}+Q(x) V=0$. Though note that "amplitudes" are modified.

Example 4.1. For Bessel's equation of order $0, y^{\prime \prime}+\frac{1}{r} y^{\prime}+y=0$, which appeared here in Example 1.1, setting $V=\sqrt{x} y$ yields the equation $V^{\prime \prime}+\left(1+\frac{1}{4 x^{2}}\right) V=0$, which oscillates by

$$
\begin{aligned}
& \left\{\mathrm{V}_{0}\right\}=\text { NDSolve }[\\
& \quad \mathrm{V}^{\prime} \cdot[\mathrm{x}]+\left(1+\frac{1}{4 \mathrm{x}^{2}}\right) \mathrm{V}[\mathrm{x}]=0 \\
& \quad \& \& \mathrm{~V}[1]==1 \& \& \mathrm{~V}^{\prime}[1]==1 / 2, \\
& \mathrm{~V}[\mathrm{x}],\{\mathrm{x}, 1,50\} \\
& \mathrm{]} ; \\
& \operatorname{Plot}\left[\text { Evaluate }\left[\left\{\mathrm{y}[\mathrm{x}] / . \mathrm{J}_{0}, \mathrm{~V}[\mathrm{x}] / . \mathrm{V}_{0}\right\}\right],\{\mathrm{x}, 1,50\}\right]
\end{aligned}
$$

4.2. Changing the Independent Variable. If y satisfies $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ and we set $z=\nu(x)$, where ν satisfies $\nu^{\prime \prime}+p \nu^{\prime}=0$, then the equation becomes

$$
\frac{d^{2} y}{d z^{2}}+Q(z) y=0, \quad \text { where } \quad Q(z)=\frac{q(x(z))}{\left[\nu^{\prime}(x(z))\right]^{2}}
$$

The zeros of y get moved by this transformation, so studying the oscillatory behaviour of $y(x)$ as $x \rightarrow \infty$ corresponds to studying the oscillatory behaviour of $y(z)$ as $z \rightarrow \lim _{x \rightarrow \infty} \nu(x)$, and the latter point may or may not be ∞. Note though, that the amplitudes of oscillations (if they occur), are unchanged.

Exercise 4.1. Bring the Bessel equation of order 0 to the form $\frac{d^{2} y}{d z^{2}}+Q(z) y=0$ by a change of the independent variable and verify once more that its solutions oscillate as $x \rightarrow \infty$.

Exercise 4.2. Try to determine the behaviour of solutions of the equation $y^{\prime \prime}+y^{\prime} / x+y / x^{3}=$ 0 as $x \rightarrow \infty$, first by a change of the dependent variable and then by a change of the independent variable.

Example 4.2. Under the change of independent variable $z(x)=x^{3} / 3$, the equation $y^{\prime \prime}-$ $\frac{2}{x} y^{\prime}+y=0$ becomes the equation $\frac{d^{2} y}{d z^{2}}+\frac{1}{(3 z)^{4 / 3}} y=0$:
$a=50 ; b=40 ;$
$\psi=$ NDSolve
$y^{\prime} '[x]-\frac{2}{x} y^{\prime}[x]+y[x]=0$
$\& \& y[1]==1 \& \& y^{\prime}[1]==0$,
$y[x],\{x, 1, a\}$
];
Plot[Evaluate[y[x] /. ψ],
$\{x, 1, a\}$, PlotRange $\rightarrow\{-b, b\}]$

```
\psi = NDSolve[
```

\psi = NDSolve[
y''[z] + \frac{1}{(3z\mp@subsup{)}{}{4/3}}y[z]==0
y''[z] + \frac{1}{(3z\mp@subsup{)}{}{4/3}}y[z]==0
\&\& y[1/3] == 1 \&\& y'[1/3] == 0,
\&\& y[1/3] == 1 \&\& y'[1/3] == 0,
y[z], {z,1, a3/3}
y[z], {z,1, a3/3}
];
];
Plot[Evaluate[y[z] /. \psi],
Plot[Evaluate[y[z] /. \psi],
{z,1, a}/3}, PlotRange ->{-b,b}
{z,1, a}/3}, PlotRange ->{-b,b}

Exercise 4.3. For each of the following equations, decide whether their solutions oscillate for large x (here $n>0$):
(1) $x^{2} y^{\prime \prime}+x y^{\prime}+y=0$.
(2) $x y^{\prime \prime}+(1-x) y^{\prime}+n y=0$.
(3) $y^{\prime \prime}-2 x y^{\prime}+2 n y=0$.
(4) $x y^{\prime \prime}+(2 n+1) y^{\prime}+x y=0$.

Exercise 4.4. (1) Study whether solutions of $x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0$ oscillate as $x \rightarrow \infty$ and as $x \rightarrow-\infty$.
(2) Do the same for $x^{2} y^{\prime \prime}-4 x y^{\prime}+(6-x) y=0$.

Exercise 4.5. Are there any values of k for which solutions to $(1-x) y^{\prime \prime}-x y^{\prime}+k y=0$ oscillate as $x \rightarrow \infty$?

Exercise 4.6. How do solutions of

$$
x(x-1) y^{\prime \prime}+\left(3 x-\frac{1}{2}\right) y^{\prime}+y=0
$$

behave as $x \rightarrow \infty$?
Exercise 4.7. How do solutions of

$$
y^{\prime \prime}+\frac{1}{x^{2}} y^{\prime}+\frac{1}{4 x^{4}} y=0
$$

behave as $x \rightarrow \infty$?

5. The Sturm Comparison Theorem

Theorem 5.1. (The Sturm Comparison Theorem) Suppose y_{1} satisfies $y_{1}^{\prime \prime}+q_{1} y_{1}=0$ and y_{2} satisfies $y_{2}^{\prime \prime}+q_{2} y_{2}=0$ and suppose $q_{2}>q_{1}$ in some interval. Then in the open interval between any two zeros of y_{1} there is a zero of y_{2} (hence y_{2} oscillates more rapidly than y_{1}).
Proof. Consider $W(x):=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)$. Then

$$
W^{\prime}=y_{1} y_{2}^{\prime \prime}-y_{2} y_{1}^{\prime \prime}=\left(q_{1}-q_{2}\right) y_{1} y_{2}
$$

Now argue by contradiction. Suppose a and b are successive zeros of

Charles Sturm, 1803-1855 y_{1}, and $a<b$, and that y_{2} has no zeros on (a, b). On (a, b) the solution y_{1} is non-zero; without loss of generality, it is positive. This implies that $y_{1}^{\prime}(a)>0$ and $y_{1}^{\prime}(b)<0$. Also without loss of generality, $y_{2}>0$ on (a, b). Then by the above equality and by $q_{1}<q_{2}$, it follows that W is decreasing on (a, b). Yet $W(a)=-y_{2}(a) y_{1}^{\prime}(a) \leq 0$ and $W(b)=-y_{2}(b) y_{1}^{\prime}(b) \geq 0$.
Corollary 5.1. Assuming $y^{\prime \prime}+q y=0$, if q is increasing the the distance between successive zeros of y is decreasing, and if q is decreasing then the distance between successive zeros of y is increasing.

Proof. Assume for example that q is increasing, and that $a<b$ and $c<d$ are two pairs of successive zeros of y, with $c>a$. Then $y_{1}(x):=y(x+c-a)$ solves $y_{1}^{\prime \prime}+q_{1} y_{1}=0$, where $q_{1}(x):=q(x+c-a)$, and quite clearly, a and $d+a-c$ are successive zeros of y_{1}. But $q_{1}>q$, and for y, the next zero after a is b, meaning that the next zero of y_{1} must come before b. Namely, $d+a-c<b$, or alternatively, $d-c<b-a$, as required.

Example 5.2. As we have seen in Example 4.1 the Bessel equation of order 0 is equivalent to the equation $V^{\prime \prime}+\left(1+\frac{1}{4 x^{2}}\right) V=0$. Hence the distance between successive zeros of the Bessel equation of order 0 is increasing and by comparison with $v^{\prime \prime}+v=0$, it converges to π :
$\mathbf{z s}=\mathbf{x} / . \operatorname{Table}[F i n d \operatorname{Root}[\mathrm{y}[\mathrm{x}] / . \operatorname{Jor}\{\mathbf{x}, \lambda\}],\{\lambda, 2.8,50,3.14\}]$
$\{2.91009,6.03123,9.16593,12.3041,15.4436,18.5839,21.7245,24.8654$, $28.0064,31.1475,34.2888,37.43,40.5714,43.7127,46.8541,49.9956\}$

Table[zs[[j+1]]-zs[[j]], \{j, 1, 15\}]
$\{3.12114,3.1347,3.13816,3.13954,3.14023,3.14062,3.14087$,
$3.14103,3.14114,3.14123,3.14129,3.14133,3.14137,3.1414,3.14143\}$

Example 5.3. Solutions of Euler's equation $x^{2} y^{\prime \prime}+\gamma y=0$ oscillate for $\gamma>\frac{1}{4}$ but do not oscillate for $\gamma \leq \frac{1}{4}$:

Corollary 5.4. Suppose there exist numbers $\gamma>\frac{1}{4}$ and A such that for all $x \geq A$ we have $q(x)>\frac{\gamma}{x^{2}}$. Then every solution of $y^{\prime \prime}+q y=0$ oscillates infinitely often for $x>A$. However if for all $x \geq A$ we have $q(x) \leq \frac{\gamma}{4 x^{2}}$, then solutions of $y^{\prime \prime}+q y=0$ have at most one zero for $x \geq A$.

Exercise 5.1. Construct an equation $y^{\prime \prime}+$ $q y=0$ whose solutions oscillate, yet so slowly that even the above corollary would not detect these oscillations. [Note that any such equation can be used as a finer comparison criterion than the one in the corollary].

Hint. Change the independent variable to slow things down, and then the dependent variable to bring them back


```
    x }->\mathrm{ Log[z];
```

eq $=\operatorname{Expand}\left[\frac{\mathrm{eq}}{\text { coefficient }\left[\mathrm{eq}, \mathrm{Y}^{\prime}[\mathrm{Z}]\right]}\right]$
$\frac{\gamma Y[z]}{z^{2} \log [z]^{2}}+\frac{Y^{\prime}[z]}{z}+Y^{\prime \prime}[z]$
$\{p, q\}=\operatorname{Coefficient}[e q, \#] \& / @$
\{Y'[z], Y[z]\};
$Q=q-\frac{1}{4} p^{2}-\frac{1}{2} \partial_{z} p$
$\frac{1}{4 z^{2}}+\frac{\gamma}{z^{2} \log [z]^{2}}$ to the right form.

Exercise 5.2. What can you say about the spacing of the zeros of the following equations:
(1) $y^{\prime \prime}+\left(x^{2}-1\right)^{1 / 3} y=0$.
(2) $y^{\prime \prime}-\left(x-x^{3}\right) y=0$.

Exercise 5.3. Let y be a solution of Bessel's equation of order α :

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{\alpha^{2}}{x^{2}}\right) y=0
$$

(1) Show that if $\alpha^{2}<\frac{1}{4}$ then successive zeros of y are separated by less than π.
(2) Show that if $\alpha^{2}>\frac{1}{4}$ then successive zeros of y are separated by more than π.
(3) What if $\alpha^{2}=\frac{1}{4}$?

Exercise 5.4. Show that all solutions of $y^{\prime \prime}+\left(\frac{1}{4 x^{2}}+e^{-x}\right) y=0$ do not oscillate.
Exercise 5.5. Study the $x \rightarrow \infty$ behaviour of solutions of $y^{\prime \prime}+\frac{3}{x} y^{\prime}+\left(\frac{1}{x^{2}}-\frac{1}{2 x^{4}}\right) y=0$.
Exercise 5.6. For which values of k to all solutions of $\left(x^{2}-1\right) y^{\prime \prime}+x y^{\prime}+k y=0$ oscillate as $x \rightarrow \infty$?

Exercise 5.7. Prove that if $q(x) \rightarrow L>0$ as $x \rightarrow \infty$, then the spacing between successive zeros of solutions of $y^{\prime \prime}+q y=0$ converges to $\frac{\pi}{\sqrt{L}}$ as $x \rightarrow \infty$.
Exercise 5.8. Prove the "Sturm Separation Theorem": If y_{1} and y_{2} are two linearly independent solutions of the same equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, then their zeros alternate. Namely, between any two zeros of y_{1} there is a zero of y_{2} and between any two zeros of y_{2} there is a zero of y_{1}.

6. Amplitudes

Theorem 6.1. Consider a solution y of the equation $y^{\prime \prime}+p y^{\prime}+q y=0$. If $q>0$ and $q^{\prime}+2 p q>0$ on some interval $[a, b]$ and $y^{\prime}(a)=0=y^{\prime}(b)$, then $|y(a)|>|y(b)|$. If instead $q^{\prime}+2 p q<0$ and $y^{\prime}(a)=0=y^{\prime}(b)$, then $|y(a)|<|y(b)|$. Similarly for non-strict inequalities.
Proof. Consider $F=y^{2}+\frac{\left(y^{\prime}\right)^{2}}{q}$ and note that $F^{\prime}=-\left(q^{\prime}+2 p q\right) \frac{\left(y^{\prime}\right)^{2}}{q^{2}}$.
Example 6.1. For Bessel's equation $y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\alpha^{2} / x^{2}\right) y=0$ we have $q^{\prime}+2 p q=2 / x>0$, and hence the amplitudes of its oscillations decreases on $x>0$. Yet for $y^{\prime \prime}+y / x^{2}=0$ we have $q^{\prime}+2 p q=\frac{-2}{x^{3}}<0$, and hence the amplitudes of its oscillations increases on $x>0$.

Theorem 6.1 has the following "opposite" (really, strengthening):
Proposition 6.2. Under the same conditions as in the theorem, let P be some primitive of p, meaning $P^{\prime}=p$. Then

$$
e^{P(a)} \sqrt{q(a)}|y(a)|<e^{P(b)} \sqrt{q(b)}|y(b)| \quad \text { if } \quad q^{\prime}+2 p q>0
$$

and

$$
e^{P(a)} \sqrt{q(a)}|y(a)|>e^{P(b)} \sqrt{q(b)}|y(b)| \quad \text { if } \quad q^{\prime}+2 p q<0 .
$$

Proof. Use the auxiliary function $G(x)=e^{2 P}\left(q y^{2}+\left(y^{\prime}\right)^{2}\right)$.
Corollary 6.2. If $y^{\prime \prime}+q y=0$ where $q(x) \rightarrow L>0$ monotonically as $x \rightarrow \infty$, then y oscillates as $x \rightarrow \infty$ with amplitudes that approach a finite, non-zero level.

Exercise 6.1. Describe, as best as you can at this stage, the behaviour as $x \rightarrow \infty$ of solutions of the equation $y^{\prime \prime}+\left(1-\frac{2}{x^{2}}\right) y=0$.
Example 6.3. Under the transformation $v=\sqrt{x} y$ Bessel's equation $y^{\prime \prime}+\frac{1}{x} y+\left(1-\frac{\alpha^{2}}{x^{2}}\right) y=0$ becomes the equation

$$
v^{\prime \prime}+\left(1+\frac{1-4 \alpha^{2}}{4 x^{2}}\right) v=0
$$

Thus we see that the oscillations of v increase if $\alpha<\frac{1}{2}$ and decrease if $\alpha>\frac{1}{2}$. Further, they approach a constant level - but this means that the oscillations of y decrease like $\frac{1}{\sqrt{x}}$.

More can and should be said, though perhaps not on this handout.

7. Irregular Singular Points

Behaviour of solutions near a finite irregular singular point x_{0} can sometimes be studied by the change of variables $t=1 /\left(x-x_{0}\right)$. More can and should be said, though perhaps not on this handout.

References

[CL] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York 1955.
[Co] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston 1965.
Dror Bar-Natan, December 21, 2012; http://drorbn.net/index.php?title=12-267.
Sources at http://drorbn.net/AcademicPensieve/Classes/12-267/QualitativeAnalysis/.

Rasterize[Plot3D

$\left\{\operatorname{Bessel} J[\alpha, x], \operatorname{Bessel}\left[\begin{array}{l} \\ \alpha\end{array}\right]\right\}$,
$\{x, 0,20\},\{\alpha, 0,1\}$,
PlotPoints \rightarrow 100, AxesLabel \rightarrow Automatic,
Labelstyle \rightarrow Medium,
plotstyle \rightarrow \{Pink, LightBlue $\}$
], ImageSize \rightarrow 750]

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\alpha^{2}\right) y=0
$$

