Qualitative Analysis

Based on a 1989 Princeton University handout by George Em Karniadakis. This is a "first printing" and it is likely to contain many typos and other mistakes.

Contents

1. Introduction	1
2. Regular Singular Points	2
3. The Basic Oscillation Theorems	4
4. Changes of Variables	7
4.1. Changing the Dependent Variable	7
4.2. Changing the Independent Variable	7
5. The Sturm Comparison Theorem	9
6. Amplitudes	11
7. Irregular Singular Points	12
References	12

1. INTRODUCTION

Example 1.1. Bessel's equation of order 0:

```
 \{J_0\} = NDSolve[ x^2 y''[x] + x y'[x] + x^2 y[x] == 0 
 & & y[1] == 1 & & y'[1] == 0, 
 & y[x], & (x, 1, 50) 
 ]; 
 Plot[Evaluate[y[x] /. J_0], & (x, 1, 50)]
```


$$x^2y'' + xy' + x^2y = 0$$

- Why does it oscillate?
- What does the "period" approach?
- What does the "amplitude" approach?

A power series, or a numerical approximation, won't help!

2. Regular Singular Points

Suppose 0 is a regular singular point of the equation

(1)
$$x^2y'' + xp(x)y' + q(x)y = 0.$$

(Meaning simply that p and q above have a power series expansion around 0). Let $p_0 = p(0)$ and $q_0 = q(0)$, and let r_1 and r_2 be the roots of the indicial equation $r(r-1) + p_0r + q_0 = 0$ (if they are real and distinct, assume also that $r_1 > r_2$). Then for x > 0 Equation (1) has two linearly independent solutions y_1 and y_2 , such that

 $y_1 = x^{r_1} \left(1 + \sum_{n=1}^{\infty} a_n x^n \right)$

Ferdinand Georg Frobenius, 1849– 1917, Oberwolfach image

and

$$y_{2} = \begin{cases} y_{1} \log x + x^{r} \sum_{n=1}^{\infty} b_{n} x^{n} & r_{1} = r_{2} = r \\ cy_{1} \log x + x^{r_{2}} \left(1 + \sum_{n=1}^{\infty} b_{n} x^{n} \right) & r_{1} - r_{2} = N \in \mathbb{N}_{>0} \\ x^{r_{2}} \left(1 + \sum_{n=1}^{\infty} b_{n} x^{n} \right) & \text{otherwise.} \end{cases}$$

This can be used to deduce qualitative information! The behaviour near 0 of a power series is dominated by its 0th term. The cases are:

$$y \sim \begin{cases} ax^{r_1} + bx^{r_2} & r_1 - r_2 \in \mathbb{R} \setminus \mathbb{Z} \\ x^{\alpha}(a\cos(\beta\log x) + b\sin(\beta\log x)) & r_{1,2} = \alpha + i\beta \in \mathbb{C} \setminus \mathbb{R} \\ x^{r}(a + b\log x) & r_1 = r_2 = r \\ x^{r_1}(a + bc\log x) + bx^{r_2} & r_1 - r_2 \in \mathbb{N}_{>0} \end{cases}$$

Example 2.1. Bessel's equation of order α ,

$$y'' + \frac{1}{x}y' + \left(1 - \frac{\alpha^2}{x^2}\right) = 0,$$

has indicial equation $r(r-1) + r - \alpha^2 = 0$ whose solutions are $r_{1,2} = \pm \alpha$. Here are a few possibilities:

```
 \begin{array}{l} \mbox{GraphicsGrid} \Big[ \mbox{Partition} \Big[ \mbox{Table} \Big[ \\ \mbox{Plot} \Big[ \{ \mbox{BesselJ}[\alpha, \, x] \,, \, \mbox{BesselY}[\alpha, \, x] \, \} , \, \{ x, \, 0, \, 1 \, \} , \\ \mbox{AxesLabel} \rightarrow \mbox{Automatic, PlotPoints} \rightarrow 100, \\ \mbox{PlotLabel} \rightarrow \mbox{StringReplace} \Big[ \mbox{"y"} \, + \, \box{$\frac{1}{x}$} \mbox{y"} \, + \, (1 - \frac{\alpha^2}{x^2}) \mbox{y = 0"} \, , \\ \mbox{"a"} \rightarrow \mbox{ToString}[\alpha] \Big] \Big] , \\ \mbox{$\{\alpha, \ 0., \ 1.5, \ 0.5\}$} \\ \Big] , 2 \Big] \Big] \end{array}
```

$$y'' + \frac{1}{x}y' + (1 - \frac{0.^2}{x^2})y = 0$$

Example 2.2. The equation $y'' - 3y' + \left(\frac{13}{2x^2} + \cos x\right)y = 0$ has $r_{1,2} = \frac{1}{2} \pm \frac{5}{2}i$.

Sol = NDSolve[y''[x] - 3 y'[x] + $\left(\frac{13}{2x^2} + \cos[x]\right) y[x] = 0 \&\&$ y[1] == 1 && y'[1] == 0, y[x], {x, $\epsilon = 10^{-9}, 1$ }];

 $Plot[Evaluate[y[x] /. Sol], \{x, \epsilon, 1\}, PlotPoints \rightarrow 1000]$

Exercise 2.1. Determine the behaviour near x = 0 of solutions of the equation

$$y'' + \left(\frac{1}{2x^2} + \frac{1}{2(1-x^2)}\right)y = 0.$$

Exercise 2.2. Using the change of variable t = 1/x, study the behaviour of Legendre's equation of order α ,

$$(1 - x^2)y'' - 2xy' + \alpha(\alpha + 1)y = 0,$$

for large x and for all real α .

Exercise 2.3. Find the general solution of Legendre's equation of order $\alpha = 0$,

- (1) using power series, and,
- (2) explicitly,

and determine the behaviour of these solutions as $x \to \infty$.

Exercise 2.4. Show that x = 0 is a regular singular point of the equation

 $x^{3}y'' + 2(1 - \cos x)y' + (\sin x)y = 0$

and study the qualitative behaviour of its solutions near that point.

Exercise 2.5. Show that for any non-zero value of the constant β , the point $x = \infty$ is a regular singular point of the equation

$$x^2y'' + 2xy' + \beta y = 0.$$

Study the behaviour of this equation near $x = \infty$ for $\beta = -\frac{3}{4}, \frac{3}{16}, \frac{1}{4}, \frac{5}{4}$. What if $\beta = 0$?

Exercise 2.6. Show that $x = \infty$ is *not* a regular singular point for the constant-coefficient equation y'' + ay' + by = 0 for any values of a and b (except a = b = 0).

3. The Basic Oscillation Theorems

Theorem 3.1. If q(x) < 0 for every x in some connected subset I of \mathbb{R} , then any solution of y'' + qy = 0 may have at most one zero on I.

Example 3.1. Consider the solutions of y'' - y = 0 with y(0) = 1 and y'(0) = c, for $c \in \{1, 0, -0.9, -1, -2\}$.

```
Plot[Evaluate[Table[
```

y[x] /.
DSolve[y''[x] - y[x] == 0
 && y[0] == 1 && y'[0] == c,
 y[x], x],
 {c, {1, 0, -0.9, -1, -2}}
]], {x, 0, 2}, AspectRatio → 2]

Adrien-Marie Legendre **Exercise 3.1.** Solve the equation $y'' + \frac{3}{16x^2}y = 0$, and decide if its solutions ever oscillate.

Theorem 3.2. If q(x) is continuous and q(x) > 0 for all $x \ge A$ and if $\int_A^{\infty} q(x)dx = \infty$, then any solution to y'' + qy = 0 has infinitely many zeros for $x \ge A$.

Proof. Suppose not. Then there is a solution y for which y(x) > 0 for all $x \ge B$, for some $B \ge A$. If we had $y'(C) \le 0$ for some C > B, then as y'' < 0 and therefore y' is decreasing, we'd have that y'(x) < 0 for all x > C, and therefore there is some x > C with y(x) = 0. So it must be that y'(x) > 0 for all $x \ge B$. Now consider $V(x) := -\frac{y'(x)}{y(x)}$. We already know it is negative for all $x \ge B$. Yet

$$V' = -\frac{y''y - y'^2}{y^2} = \frac{qy^2 + y'^2}{y^2} = q + V^2,$$

and hence

$$V(x) = V(B) + \int_{B}^{x} V'(t)dt = V(B) + \int_{B}^{x} V^{2}dt + \int_{B}^{x} qdt.$$

But as $\int_{B}^{\infty} q(t)dt$ is divergent, the above quantity will become positive for large enough x, contradicting the negativity of V(x).

Example 3.2. Solutions of Airy's equation y'' + xy = 0 oscillate for positive x but do not oscillate for negative x:

```
Ail = NDSolve[y''[x] + xy[x] == 0 && y[0] == 1 && y'[0] == 0,
 y[x], {x, -3, 10}];
Ai2 = NDSolve[y''[x] + xy[x] == 0 && y[0] == 0 && y'[0] == 1,
 y[x], {x, -3, 10}];
Ai = Join[Ai1, Ai2]
{{y[x] → InterpolatingFunction[{{-3., 10.}}, <>][x]},
 {y[x] → InterpolatingFunction[{{-3., 10.}}, <>][x]}
```

Plot[Evaluate[y[x] /. Ai], {x, -3, 10}]

George Biddell Airy, 1801–1892

In the other direction, we have the following:

Theorem 3.3. Let A > 0 be given. If q(x) is continuous and q(x) > 0 for all $x \ge A$ and if $\int_A^\infty xq(x)dx < \infty$, and if y is a solution of y'' + qy = 0, then

- (1) There is some B > A beyond which y has no zeros.
- (2) There is a constant K such that

$$\lim_{x \to \infty} y'(x) = K = \lim_{x \to \infty} \frac{y(x)}{x}$$

Comment 3.3. I could not prove or find a counterexample to the statement that above, K is always non-zero. If this is true then the first statement above is superfluous as it would immediately follow from the second. I didn't have time to consult with the references, [CL, page 103, problem 28] and [Co, page 92 Theorem 3].

Proof. Find C > A such that $\int_C^{\infty} xqdx < 1$, and assume that y has at least two zeros beyond C; let a be the first of those and let b be the second. Let $\alpha = y'(a)$; without loss of generality we may assume that $\alpha > 0$. Then y'(b) < 0 and by convexity we have that on $[a, b], y(x) \leq \alpha(x - a) < \alpha x$. So

$$\alpha \le y'(a) - y'(b) = -\int_a^b y''(x)dx = \int_a^b yqdx \le \int_a^b \alpha xqdx \le \alpha \int_C^\infty xqdx < \alpha,$$

a contradiction. Therefore y cannot have two further zeros beyond B, and (1) is proven.

Now we know that beyond some point D, y is non-zero. Without loss of generality it is positive and therefore convex. It therefore lies below any of its tangents, and therefore on $[D, \infty]$ it is bounded by some linear function βx . Hence for any a < b in $[D, \infty]$,

$$|y'(a) - y'(b)| = \left| \int_a^b y'' dx \right| = \int_a^b yq dx \le \int_a^b \beta xq dx \le \beta \int_a^\infty xq dx,$$

and the last integral goes to 0 when $a \to \infty$. Hence y'(x) is a "Cauchy function" (the "function" analog of a "Cauchy sequence"), and hence it converges to some limit K. The rest follows from L'Hôpital.

Exercise 3.2. Show that solutions of $y'' + (\log x)y = 0$ oscillate as $x \to \infty$, yet have at most one zero for 0 < x < 1.

Exercise 3.3. Determine the behaviour of solutions of $y'' + \frac{x^2-2}{x^2(x^2+1)^2}y = 0$ as $x \to \infty$.

Exercise 3.4. What do the above theorems say about the behaviour of solutions of $y'' + \frac{y}{x^2} = 0$ near ∞ ? What is their actual behaviour?

Exercise 3.5. Show that all solutions of $y'' + x^{\alpha}y = 0$ are oscillatory for x > 1 if $\alpha > -1$. For what value of α does Theorem 3.3 apply to determine the large x behaviour of such solutions?

Exercise 3.6. Let y be the solution of

$$y'' + (x^2 - 1)^{1/3}y = 0,$$
 $y(0) = 0,$ $y'(0) = 1.$

Does y(x) have other zeros for $-\infty < x < \infty$? Does it have infinitely many? What intervals a < x < b cannot contain any other zeros?

Exercise 3.7. How do solutions of

$$y'' + \frac{1}{(t^2 + 1)^{3/2}}y = 0$$

behave as $t \to \infty$? As $t \to -\infty$?

4. Changes of Variables

4.1. Changing the Dependent Variable. If y satisfies y'' + p(x)y' + q(x)y = 0 and we set $y = \mu(x)V$, where μ satisfies $2\mu' + p\mu = 0$, then V satisfies V'' + Q(x)V = 0, where $Q = q - \frac{1}{4}p^2 - \frac{1}{2}p'$. The good news is that V has exactly the same zeros as y, so the "frequency" of the oscillatory behaviour of y may be studied by studying V'' + Q(x)V = 0. Though note that "amplitudes" are modified.

Example 4.1. For Bessel's equation of order 0, $y'' + \frac{1}{x}y' + y = 0$, which appeared here in Example 1.1, setting $V = \sqrt{xy}$ yields the equation $V'' + (1 + \frac{1}{4x^2})V = 0$, which oscillates by Theorem 3.2:

4.2. Changing the Independent Variable. If y satisfies y'' + p(x)y' + q(x)y = 0 and we set $z = \nu(x)$, where ν satisfies $\nu'' + p\nu' = 0$, then the equation becomes

$$\frac{d^2y}{dz^2} + Q(z)y = 0,$$
 where $Q(z) = \frac{q(x(z))}{[\nu'(x(z))]^2}$

The zeros of y get moved by this transformation, so studying the oscillatory behaviour of y(x) as $x \to \infty$ corresponds to studying the oscillatory behaviour of y(z) as $z \to \lim_{x\to\infty} \nu(x)$, and the latter point may or may not be ∞ . Note though, that the amplitudes of oscillations (if they occur), are unchanged.

Exercise 4.1. Bring the Bessel equation of order 0 to the form $\frac{d^2y}{dz^2} + Q(z)y = 0$ by a change of the independent variable and verify once more that its solutions oscillate as $x \to \infty$.

Exercise 4.2. Try to determine the behaviour of solutions of the equation $y'' + y'/x + y/x^3 = 0$ as $x \to \infty$, first by a change of the dependent variable and then by a change of the independent variable.

Example 4.2. Under the change of independent variable $z(x) = x^3/3$, the equation $y'' - \frac{2}{x}y' + y = 0$ becomes the equation $\frac{d^2y}{dz^2} + \frac{1}{(3z)^{4/3}}y = 0$:

Exercise 4.3. For each of the following equations, decide whether their solutions oscillate for large x (here n > 0):

- (1) $x^2y'' + xy' + y = 0.$
- (2) xy'' + (1-x)y' + ny = 0.
- (3) y'' 2xy' + 2ny = 0.
- (4) xy'' + (2n+1)y' + xy = 0.

Exercise 4.4. (1) Study whether solutions of $x^2y'' - xy' + 5y = 0$ oscillate as $x \to \infty$ and as $x \to -\infty$.

(2) Do the same for $x^2y'' - 4xy' + (6 - x)y = 0$.

Exercise 4.5. Are there any values of k for which solutions to (1 - x)y'' - xy' + ky = 0 oscillate as $x \to \infty$?

Exercise 4.6. How do solutions of

$$x(x-1)y'' + (3x - \frac{1}{2})y' + y = 0$$

behave as $x \to \infty$?

Exercise 4.7. How do solutions of

$$y'' + \frac{1}{x^2}y' + \frac{1}{4x^4}y = 0$$

behave as $x \to \infty$?

5. The Sturm Comparison Theorem

Theorem 5.1. (The Sturm Comparison Theorem) Suppose y_1 satisfies $y_1'' + q_1y_1 = 0$ and y_2 satisfies $y_2'' + q_2y_2 = 0$ and suppose $q_2 > q_1$ in some interval. Then in the open interval between any two zeros of y_1 there is a zero of y_2 (hence y_2 oscillates more rapidly than y_1).

Proof. Consider
$$W(x) := y_1(x)y'_2(x) - y_2(x)y'_1(x)$$
. Then
 $W' = y_1y''_2 - y_2y''_1 = (q_1 - q_2)y_1y_2.$

Now argue by contradiction. Suppose a and b are successive zeros of y_1 , and a < b, and that y_2 has no zeros on (a, b). On (a, b) the solution

 y_1 is non-zero; without loss of generality, it is positive. This implies that $y'_1(a) > 0$ and $y'_1(b) < 0$. Also without loss of generality, $y_2 > 0$ on (a, b). Then by the above equality and by $q_1 < q_2$, it follows that W is decreasing on (a, b). Yet $W(a) = -y_2(a)y'_1(a) \le 0$ and $W(b) = -y_2(b)y'_1(b) \ge 0$.

Corollary 5.1. Assuming y'' + qy = 0, if q is increasing the distance between successive zeros of y is decreasing, and if q is decreasing then the distance between successive zeros of y is increasing.

Proof. Assume for example that q is increasing, and that a < b and c < d are two pairs of successive zeros of y, with c > a. Then $y_1(x) := y(x + c - a)$ solves $y''_1 + q_1y_1 = 0$, where $q_1(x) := q(x + c - a)$, and quite clearly, a and d + a - c are successive zeros of y_1 . But $q_1 > q$, and for y, the next zero after a is b, meaning that the next zero of y_1 must come before b. Namely, d + a - c < b, or alternatively, d - c < b - a, as required.

Example 5.2. As we have seen in Example 4.1 the Bessel equation of order 0 is equivalent to the equation $V'' + (1 + \frac{1}{4x^2})V = 0$. Hence the distance between successive zeros of the Bessel equation of order 0 is increasing and by comparison with v'' + v = 0, it converges to π :

zs = x /. Table[FindRoot[y[x] /. J_0 , {x, λ }], { λ , 2.8, 50, 3.14}]

{2.91009, 6.03123, 9.16593, 12.3041, 15.4436, 18.5839, 21.7245, 24.8654, 28.0064, 31.1475, 34.2888, 37.43, 40.5714, 43.7127, 46.8541, 49.9956}

Table[zs[[j+1]] - zs[[j]], {j, 1, 15}]

{3.12114, 3.1347, 3.13816, 3.13954, 3.14023, 3.14062, 3.14087, 3.14103, 3.14114, 3.14123, 3.14129, 3.14133, 3.14137, 3.1414, 3.14143} **Example 5.3.** Solutions of Euler's equation $x^2y'' + \gamma y = 0$ oscillate for $\gamma > \frac{1}{4}$ but do not oscillate for $\gamma \leq \frac{1}{4}$:

Corollary 5.4. Suppose there exist numbers $\gamma > \frac{1}{4}$ and A such that for all $x \ge A$ we have $q(x) > \frac{\gamma}{x^2}$. Then every solution of y'' + qy = 0 oscillates infinitely often for x > A. However if for all $x \ge A$ we have $q(x) \le \frac{\gamma}{4x^2}$, then solutions of y'' + qy = 0 have at most one zero for $x \ge A$.

Exercise 5.1. Construct an equation y'' + qy = 0 whose solutions oscillate, yet so slowly that even the above corollary would not detect these oscillations. [Note that any such equation can be used as a finer comparison criterion than the one in the corollary].

Hint. Change the independent variable to slow things down, and then the dependent variable to bring them back to the right form.

$$eq = x^{2} y''[x] + \gamma y[x] / . y \rightarrow (Y[e^{#}] \&) / .$$

$$x \rightarrow Log[z];$$

$$eq = Expand \left[\frac{eq}{Coefficient[eq, Y''[z]]} \right]$$

$$\frac{\gamma Y[z]}{z^{2} Log[z]^{2}} + \frac{Y'[z]}{z} + Y''[z]$$

$$\{p, q\} = Coefficient[eq, #] \& /@$$

$$\{Y'[z], Y[z]\};$$

$$Q = q - \frac{1}{4} p^{2} - \frac{1}{2} \partial_{z} p$$

$$\frac{1}{4 z^{2}} + \frac{\gamma}{z^{2} Log[z]^{2}}$$

Exercise 5.2. What can you say about the spacing of the zeros of the following equations:

(1) $y'' + (x^2 - 1)^{1/3}y = 0.$ (2) $y'' - (x - x^3)y = 0.$

Exercise 5.3. Let y be a solution of Bessel's equation of order α :

$$y'' + \frac{1}{x}y' + \left(1 - \frac{\alpha^2}{x^2}\right)y = 0.$$

- (1) Show that if $\alpha^2 < \frac{1}{4}$ then successive zeros of y are separated by less than π .
- (2) Show that if $\alpha^2 > \frac{1}{4}$ then successive zeros of y are separated by more than π .
- (3) What if $\alpha^2 = \frac{1}{4}$?

Exercise 5.4. Show that all solutions of $y'' + \left(\frac{1}{4x^2} + e^{-x}\right)y = 0$ do not oscillate.

Exercise 5.5. Study the $x \to \infty$ behaviour of solutions of $y'' + \frac{3}{x}y' + \left(\frac{1}{x^2} - \frac{1}{2x^4}\right)y = 0$.

Exercise 5.6. For which values of k to all solutions of $(x^2 - 1)y'' + xy' + ky = 0$ oscillate as $x \to \infty$?

Exercise 5.7. Prove that if $q(x) \to L > 0$ as $x \to \infty$, then the spacing between successive zeros of solutions of y'' + qy = 0 converges to $\frac{\pi}{\sqrt{L}}$ as $x \to \infty$.

Exercise 5.8. Prove the "Sturm Separation Theorem": If y_1 and y_2 are two linearly independent solutions of the same equation y'' + p(x)y' + q(x)y = 0, then their zeros alternate. Namely, between any two zeros of y_1 there is a zero of y_2 and between any two zeros of y_2 there is a zero of y_1 .

6. Amplitudes

Theorem 6.1. Consider a solution y of the equation y'' + py' + qy = 0. If q > 0 and q' + 2pq > 0 on some interval [a, b] and y'(a) = 0 = y'(b), then |y(a)| > |y(b)|. If instead q' + 2pq < 0 and y'(a) = 0 = y'(b), then |y(a)| < |y(b)|. Similarly for non-strict inequalities.

Proof. Consider
$$F = y^2 + \frac{(y')^2}{q}$$
 and note that $F' = -(q'+2pq)\frac{(y')^2}{q^2}$.

Example 6.1. For Bessel's equation $y'' + \frac{1}{x}y' + (1 - \alpha^2/x^2)y = 0$ we have q' + 2pq = 2/x > 0, and hence the amplitudes of its oscillations decreases on x > 0. Yet for $y'' + y/x^2 = 0$ we have $q' + 2pq = \frac{-2}{x^3} < 0$, and hence the amplitudes of its oscillations increases on x > 0.

Theorem 6.1 has the following "opposite" (really, strengthening):

Proposition 6.2. Under the same conditions as in the theorem, let P be some primitive of p, meaning P' = p. Then

$$e^{P(a)}\sqrt{q(a)}|y(a)| < e^{P(b)}\sqrt{q(b)}|y(b)|$$
 if $q' + 2pq > 0$,

and

$$e^{P(a)}\sqrt{q(a)}|y(a)| > e^{P(b)}\sqrt{q(b)}|y(b)|$$
 if $q' + 2pq < 0.$

Proof. Use the auxiliary function $G(x) = e^{2P}(qy^2 + (y')^2)$.

Corollary 6.2. If y'' + qy = 0 where $q(x) \to L > 0$ monotonically as $x \to \infty$, then y oscillates as $x \to \infty$ with amplitudes that approach a finite, non-zero level.

Exercise 6.1. Describe, as best as you can at this stage, the behaviour as $x \to \infty$ of solutions of the equation $y'' + \left(1 - \frac{2}{x^2}\right)y = 0$.

Example 6.3. Under the transformation $v = \sqrt{xy}$ Bessel's equation $y'' + \frac{1}{x}y + \left(1 - \frac{\alpha^2}{x^2}\right)y = 0$ becomes the equation

$$v'' + \left(1 + \frac{1 - 4\alpha^2}{4x^2}\right)v = 0.$$

Thus we see that the oscillations of v increase if $\alpha < \frac{1}{2}$ and decrease if $\alpha > \frac{1}{2}$. Further, they approach a constant level — but this means that the oscillations of y decrease like $\frac{1}{\sqrt{x}}$.

More can and should be said, though perhaps not on this handout.

7. IRREGULAR SINGULAR POINTS

Behaviour of solutions near a finite *irregular* singular point x_0 can sometimes be studied by the change of variables $t = 1/(x - x_0)$. More can and should be said, though perhaps not on this handout.

References

[CL] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York 1955.

[Co] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston 1965.

Dror Bar-Natan, December 21, 2012; http://drorbn.net/index.php?title=12-267.

Sources at http://drorbn.net/AcademicPensieve/Classes/12-267/QualitativeAnalysis/.

```
Rasterize[Plot3D[

{BesselJ[\alpha, x], BesselY[\alpha, x]},

{x, 0, 20}, {\alpha, 0, 1},

PlotPoints \rightarrow 100, AxesLabel \rightarrow Automatic,

LabelStyle \rightarrow Medium,

PlotStyle \rightarrow {Pink, LightBlue}

], ImageSize \rightarrow 750]
```


$$x^{2}y'' + xy' + (x^{2} - \alpha^{2})y = 0$$