HW6 is on web!
Riddle along: A game: Player A writes the numbers 1-18 on the faces of three blank dice, to her liking. Player B takes one of the 3 dice. Player B takes one of the remaining two, and throws away the third. Player A and B then play 1,000 rounds of "dice war" with the dice they hold. Whom would you rather be, player A or player B ?

On board: $V, \beta=\left(u_{1} \ldots u_{n}\right)$ an ordarid basis
Given $x \in \nabla$, write $x=\sum a_{i} u_{i}$

$$
\begin{aligned}
& \qquad x]_{\beta}=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \\
& \text { "words of } x \\
& \text { rel } \beta^{n}
\end{aligned}
$$

The. Given V w/ basis $\beta=\left(V_{1} . . . V_{n}\right)$

$$
a \wedge d \quad w_{1} \operatorname{basij} \gamma=\left(w_{1} \ldots W_{m}\right)
$$

we have an isomorfhish

$$
\begin{aligned}
& \text { A abstract, geneal, coord-free } \\
& \text { isis nimbus, } \\
& \begin{array}{l}
\text { clot de derwent } \\
\text { easy to work with }
\end{array} \\
& \alpha(V, W) \longrightarrow M_{\operatorname{man}}(F) \\
& T \longrightarrow[T]_{\beta}^{\gamma}=A \\
& A=\left(\begin{array}{c}
a_{11} \\
{\left[T v_{11}\right.} \\
a_{m 1}
\end{array}\left|\left[T V_{2}\right]_{\gamma}\right| \ldots\left(\begin{array}{c}
a_{1 n} \\
\vdots \\
\left.T_{n}\right]_{\gamma} \\
\vdots \\
a_{m n}
\end{array}\right) \Leftrightarrow T V_{j}=\sum_{i=1}^{m} a_{k j} w_{k}\right. \\
& \begin{array}{l}
\text { Examples } 0.0 \quad 1.1 \\
2: P_{3}(\mathbb{R}) \rightarrow P_{2}(1 R) \text { differentiation }
\end{array} \\
& 3, \quad T_{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \text { 4. A: } F^{n} \rightarrow \sqrt{-m}
\end{aligned}
$$

Complete the proof that this is a vector space iso.

Definition $A \in M_{m \times n}, B \in M_{n \times p} \quad A \cdot B \in M_{m \times p}$ by $(A \cdot B)_{i k}=\sum_{j=1} A_{i j} B_{j k}$
$\stackrel{\text { Example }}{ }\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right) \cdot\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ -1 & 1\end{array}\right)=\ldots$
The $[T \cdot S]_{\alpha}^{\gamma}=[T]_{\beta}^{\gamma} \cdot[S]_{\alpha}^{\beta}$
Example $T_{\beta} \circ T_{\alpha}=T_{\alpha+\beta}$ for rotations.
The good and the bad about "mufrix ilgibra":

Next goals: 1. Compute rank T / A.
2. Compute A^{-1} (whin possith)
3. Solve systems of linter egg's.

