Read Along: Sections 2.1-2.4
Term Test: Thu Oct 25 3-5PM, Examination Facility room EX 200 (east side of McCaul St., near College).
Riddle Along: 123456789
Two players alternate drawing cards from the above deck. The first player to have 3 cards that add up to 15 , wins. Would you like to be the first to move or the second? (More on today's web, including a
 $\left(\begin{array}{l}\text { enough to } \\ \text { yellow \& } \\ \text { \& }\end{array}\right.$ video link).

Following 09-240 hour 16, taught by Yael Karshon:

- "T:V->W is linear"
- Preserving 0.
- Claim on $c x+y$.
- Example: $\mathrm{R}^{\wedge} 2->\mathrm{R}^{\wedge} 2$ by explicit formula.
- Example: Differentiation, multiplication by x .
- Example: Matrices and linear transformations on $\mathrm{F}^{\wedge} \mathrm{n}$.
- Example: Rotation (+ explicit formula).
- Claim on differences and many-element sums.
- Added 2012: \cal L(V,W) is a vector space.
- Composition of linear trans is a linear trans.
- Composition is non-commutative. Example: differentiation and multiplication by x .
- For a I.t., arbitrary values on a basis.
- "Isomorphism".

Def V \& W are somatic if Flit. $T: V \rightarrow W$ and $S: W \rightarrow V$ sit. $S O T=I_{V} \& T O S=I_{w}$
The If V, W asl fid. over F, Then $\operatorname{dim} V=\operatorname{dim} W$ iff V is isomorphic to W.
coolly If $\operatorname{dim} V=n$ over F, V is isomorphic to F^{n}.

Two "mathematical structures are "Isomorphic" if thesis a bijection ($1-14$ onto corns.) between their elements which presivis all relent relations.
Example plastic hess is iso. to ivory chess, but not to checkers.
Exanfl The game of 15 .

Pf of the \& of corollary

Fix a ff. $T: V \rightarrow W$
Def $N(T)=\operatorname{ker} T=\left\{v: T_{v}=0\right\}$ "null spcec","kernel". $R(T)=\operatorname{im} T=\{T V: V \in V\}$ "range", "image"
Prop/Def $N(T) \subset V$ is a subspace; nullity $(T):=\operatorname{dim} N(T)$

$$
R(T) \subset W \text { is a subspace } j \operatorname{rank}(T):=\operatorname{dim} R(T)
$$

Examples $O, I_{v}, D: P_{n}(R) \longrightarrow P_{n}(R)$
Thm1" the dimension theorem", "the rank-nullity The"
Given $T: V \rightarrow W, \operatorname{dim} V=\underset{m}{\operatorname{rank}}(T)+\operatorname{nullifl}_{n}(T)$
PE $\left(z_{i}\right)^{n}$, basis of $N(T)$, extend to $\left(z_{i}\right) \cup\left(v_{i}\right)$ a bass of V,

clam $w_{i}:=T\left(V_{i}\right)$ are lin indy. in W Pf.... c him W_{i} span $R(T)$ ff...

