Agende. Quotients, isomorphism tans, "better rings".
Read Along. Selick 2,1-2.3.
HW3 on wit.

Def. ICR is an ideal...
claim. If $\phi: R \rightarrow S$ is a morphism of rings, Then $\mathrm{ker}(\phi)$ is an ideal in R.
Q. Is vary idol a quotient?

Ans. Define R / I.
Example. $\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle=R_{1}$
The Isomorphism theorems. 1. $F: R \rightarrow S \Rightarrow B /$ /reef $(f)=$ in f.
(Example: $\mathrm{C} V_{i}: \mathbb{R}[x] \rightarrow \mathbb{C} \Rightarrow R_{1} \cong \mathbb{C}$)
2. $\frac{A+I}{I} \cong A / A A I \quad A \subset R$ subion, $I \subset R$ ida.

$$
3 \text { IcJCR ideas } \Rightarrow \frac{R / I}{J I} \simeq R / J
$$

4. Given an ideal I of K, there's a bijection bitumen
ideals $I \subset J \subset R$ \& ideals of R / I.
Better Rings. 1. The ultimate:
Field [Commutative, Fig a group] $\left[\begin{array}{l}\text { almost all of } \\ \text { high-schod \& }\end{array}\right]$
("division ring", if not commutative
Example: $H=\left\{a+b^{i}+c u+d k\right\} / l$
useful for $3 D$ rotations, etc...
5. (Integral) domains: Commutative, has no o-divisors. How make? For ideals which, B / I is a field or a domain? From now on, R is commutative.
Maximal Ideals. 1. Definition.
6. Ic is maximal $\Leftrightarrow R / I$ is a field.

Fishy proof: Use the yth isomorphism theorem.
Honest proof: $\Rightarrow: x \notin I \Rightarrow R x+I=R \Rightarrow \exists y \in R \quad y x+I=1+I$
$\Leftarrow J \neq I, x \in J \backslash I \Rightarrow[x]_{I} \neq 0 \Rightarrow J_{J} x y-|\in I \Rightarrow| \in J$
Examples.1. $p \mathbb{Z}$ is a maxing ideal in \mathbb{Z}.
2. $S=l^{\infty}=\left\{\begin{array}{c}\text { bed seq's } \\ \text { in } \mathbb{R}\end{array}\right\} \quad A_{n}=\left\{\left(a_{i}\right): a_{n}=0\right\}$ done

Fishy theorem. Every ideal is contained in a maximal ileal.
Proof using Zorn's Lemma.
Theorem There exists a function
Lin: $\left\{\begin{array}{c}\text { bid seq's } \\ \text { in } \\ R^{\prime}\end{array}\right\} \rightarrow \mathbb{R}$ sit.

1. If $\left(a_{n}\right)$ is convergent, $\lim a_{n}=\lim a_{n}$
2. $\operatorname{Lim}\left(a_{n}+b_{n}\right)=\operatorname{Lim}(a)+\lim \left(b_{n}\right)+\operatorname{Mor} l_{\ldots} .$.
3. $\operatorname{Lim}\left(a_{n} b_{n}\right)=\operatorname{Lim}\left(a_{n}\right) \cdot \operatorname{Lim}\left(b_{n}\right)$

Proof. $S=\left\{b_{\text {nd d }}\right.$ sig's in $\left.\left.\mathbb{R}\right\}\right\} \quad I=\left\{\left(a_{n}\right): \begin{array}{c}a_{n} \neq 0 \text { finite nary } n \prime s\end{array}\right\}$ J - a maxiond icel containing I.

$$
\operatorname{Lin}: S \rightarrow S / J \overline{\overline{\nabla_{0}}} \mathbb{R}
$$

Prime Ideals. 1. Definition $P \subset R$ is prime if ab eP

$$
\Rightarrow a \in P \text { or } b \in P
$$

2. Theorem. R / P is a domain ifs P is prime.

$$
\begin{aligned}
& \text { Proof } \Rightarrow a b \in P \Rightarrow[a b]=0 \Rightarrow[a][b]=0 \Rightarrow \begin{array}{l}
{[a]=0 \Rightarrow a+p} \\
{[b]=0 \Rightarrow b \in p}
\end{array} \\
& \leftarrow[a][b]=0 \Rightarrow[a b]=0 \Rightarrow a b \in P \Rightarrow \begin{array}{l}
a(\in \mathcal{P} \\
b \in P[a]=0 \\
b \in P
\end{array}
\end{aligned}
$$

Theoren. A maximal ideal is prime.

