Non Commutative Gaussian Elimination @ MAT 1100

By Dror Bar-Natan

Amended from a similar notebook by Dror Bar-Natan and Itai Bar-Natan. The original version is at http://www.math.toronto.edu/~drorbn/Misc/SchreierSimsRubik/.

Pensieve Header: Non Commutative Gaussian Ellimination @ MAT 1100 - as on handout + a printout of the filling table. See more at pensieve://2009-07/.

Program 0

```
gs = {purple = P[18, 27, 36, 4, 5, 6, 7, 8, 9, 3, 11, 12, 13, 14,
    15, 16, 17, 45, 2, 20, 21, 22, 23, 24, 25, 26, 44, 1, 29, 30, 31, 32, 33, 34,
    35, 43, 37, 38, 39, 40, 41, 42, 10, 19, 28, 52, 49, 46, 53, 50, 47, 54, 51, 48],
    white = P[1, 2, 3, 4, 5, 6, 16, 25, 34, 10, 11, 9, 15, 24, 33, 39, 17, 18, 19,
    20, 8, 14, 23, 32, 38, 26, 27, 28, 29, 7, 13, 22, 31, 37, 35, 36, 12,
    21, 30, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54],
    green = P[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
    21, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 48, 47, 46, 39,
    42, 45, 38, 41, 44, 37, 40, 43, 30, 29, 28, 49, 50, 51, 52, 53, 54],
    blue = P[3, 6, 9, 2, 5, 8, 1, 4, 7, 54, 53, 52, 10, 11, 12, 13, 14, 15, 19, 20,
    21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
    38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 18, 17, 16],
    red = P[13, 2, 3, 22, 5, 6, 31, 8, 9, 12, 21, 30, 37, 14, 15, 16, 17, 18, 11, 20,
    29, 40, 23, 24, 25, 26, 27, 10, 19, 28, 43, 32, 33, 34, 35, 36, 46,
    38, 39, 49, 41, 42, 52, 44, 45, 1, 47, 48, 4, 50, 51, 7, 53, 54],
    yellow = P[1, 2, 48, 4, 5, 51, 7, 8, 54, 10, 11, 12, 13, 14, 3, 18, 27, 36, 19,
    20, 21, 22, 23, 6, 17, 26, 35, 28, 29, 30, 31, 32, 9, 16, 25, 34, 37,
    38, 15, 40, 41, 24, 43, 44, 33, 46, 47, 39, 49, 50, 42, 52, 53, 45]};
($RecursionLimit = 2^16;
    n = 54;
    P/: P_P **P[a__] := P[[{a}]];
    Inv[P_P] := P @@ Ordering[P];
    Feed[P @@ Range[n]] := Null;
    Feed[p_P] := Module[{i, j},
        For[i=1, p[[i]] == i, ++i]; j = p[[i]];
        If[Head[s[i, j]] === P,
            Feed[Inv[s[i, j]] ** p],
            (*Else*)s[i, j] = p;
            Do[If[Head[s[k, l]] == P,
                Feed[s[i, j] ** s[k, l]];
                    Feed[s[k, l] **s[i, j]]
            ],
            {k, n}, {1, n}]
        ]]
    );
```

(Feed[\#]; Product[1 + Length[Select[Range[n], Head[s[i, \#]] ===P\&]],\{i, n\}])\&/@gs

2 | NonCommutativeGaussianElimination.nb

```
Images[i_] := {i}~Join~Select[Range[n], Head[s[i,#]] === P &];
ListPlot[
```

Join @@ Table[\{i, \#\} \& /@ Images[i], \{i, n\}],
AspectRatio $\rightarrow 1$
]

$43252003274489856000 /\left(8!* 3^{\wedge} 8\right.$ * $\left.12!* 2^{\wedge} 12\right)$
$\frac{1}{12}$

