Conventions for Permutations

September-13-10 1:06 PM

1. My NCGE handout:
$$\overline{C} = \overline{C} = \overline{C}$$

2. Selick's notes: $(f,g) \mapsto g \circ f$.

Example. Let S be a non-empty set. Let G be the set of bijective mappings of S onto itself. Then G is a group, the law of composition being ordinary composition of mappings. The unit element of G is the identity map of S, and the other group properties are trivially verified. The elements of G are called **permutations** of S. We also denote G by **Perm(S)**. For more information on Perm(S) when S is finite, see §5 below.

Let Ω be any nonempty set and let S_{Ω} be the set of all bijections from Ω to itself (i.e., the set of all permutations of Ω). The set S_{Ω} is a group under function composition: \circ . Note that \circ is a binary operation on S_{Ω} since if $\sigma : \Omega \to \Omega$ and $\tau : \Omega \to \Omega$ are both bijections, then $\sigma \circ \tau$ is also a bijection from Ω to Ω . Since function composition is