The soral statement.

More han anything else, I see myself as a town guide, and

I actually love the city I am explaining.

** I tend to spend too much in acry stutcorner, sometimes tulling stories that are too intricate and detailed. * As the end comes near, I'm always sorry for those quarters we didn't explore. * At the end, you only really understand a city by exploring it yourself. Just For the sent of the start of the solve.

**Compte vents * invert. * solve.

"" I in all P.F.M. Last time: IF AFMmxn is any matrix, and PFMmxn and QEMnxn and invertible matrices, hen rank A = rank PAQ. Q1 can we choose P,Q wisely, so as to make PAQ "simpler" han A ? Q2 What's simplu? $\operatorname{rank}\left(\begin{array}{c} 1 & \text{let } 0 \\ 0 & 0 \end{array}\right) = \operatorname{rank}\left(\begin{array}{c} I_{K} & 0 \\ 0 & 0 \end{array}\right) = k$ Ans 1 Examples of "good" P/Q: " elementary matrices" 1. Interchanging rors/columns, Eis 2. Multiplying r/c by a scalar. Ei,c 3. Adding a multiple of one r/c to another, E3, is

"Vow/Column reduction"

Thm Every metrix A can be r/c-reduced to a block matrix of the form

_	Do	Get	Do	Get
	1. Bring a 1 to the upper left corner by swapping the first two rows and multiplying the first row (after the swap) by 1/4.	8 2 0 10 2	2. Add $\left(-8\right)$ times the first row to the third row, in order to cancel the 8 in position 3-1.	$ \begin{pmatrix} 1 & 1 & 1 & 2 & 0 \\ 0 & 2 & 4 & 2 & 2 \\ 0 & -6 & -8 & -6 & 2 \\ 6 & 3 & 2 & 9 & 1 \end{pmatrix} $
	3. Likewise add $\left(-6\right)$ times the first row to the fourth row, in order to cancel the 6 in position 4-1.	$\begin{bmatrix} 0 & 2 & 4 & 2 & 2 \\ 0 & 6 & 8 & 6 & 2 \end{bmatrix}$	4. With similar column operations (you need three of those) cancel all the entries in the first row (except, of course, the first, which is used in the canceling).	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 2 & 2 \\ 0 & -6 & -8 & -6 & 2 \\ 0 & -3 & -4 & -3 & 1 \end{pmatrix} $
-	5. Turn the 2-2 entry to a 1 by multiplying the second row by $1/2$	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & -6 & -8 & -6 & 2 \\ 0 & -3 & -4 & -3 & 1 \end{pmatrix} $	Using two row operations "clean" the second column; that is, cancel all entries in it other than the "pivot" 1 at position 2-2.	$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 4 & 0 & 8 \\ 0 & 0 & 2 & 0 & 4 \end{pmatrix}$
	7. Using three column operations clean the second row except the pivot.		8. Clean up the row and the column of the 4 in position 3-3 by first multiplying the third row by $1/4$ and then performing the appropriate row and column transformations. Notice that by pure luck, the 4 at position 4-5 of the matrix gets killed in action.	$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

Pasted from <http://katlas.math.toronto.edu/drorbn/index.php?title=06-240/Classnotes For Thursday November 9>

Claim rank A=vank (AT)

Both, the meaning of AT in the world of life.

is quite intricate.

claim rank A = Jim (col-space (A)) = Jim (row-space (A))

done in full

Suppose you could vow reduce A to I. Find A ...

$$E_4E_3E_2E_1A=I$$
 \Rightarrow $A^{-1}=E_4E_3E_2E_1$

* The hard way. If the easy way: V.r. (A / I)
Example: $Compute$ $(12)^{-1}$ (34) .