Some proporties of U(g), to be interpreted in A&K:

1. U(y) is an algebra (non-commutative of) (1. A&A - 5 A uou - 4 2. U(y) is a co-algebra (co-commutative).) A(1) - A(11)

3. $U(g_1 \oplus g_2) = U(g_1) \otimes U(g_2)$

4. $U(g) \cong S(g)$ as v.s. & 3. $A \xrightarrow{\square} A \otimes A$ 6. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 6. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 7. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 7. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 8. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 8. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 9. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 9. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 9. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 9. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 9. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 9. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 10. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 11. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 12. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 13. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 14. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 15. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 16. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 17. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 18. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 19. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 19. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 19. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 19. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 19. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 19. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 19. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 19. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 19. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 19. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$ 19. $U(g) \cong S(g)$ as $V.S. & 3. A \xrightarrow{\square} A \otimes A$