http://drorbn.net/ap/2022-11/AlexanderLagrangians4Handlebodies initiated 2022/11/21; modified 2022/11/23, 2:40pm

Let H be a genus g handlebody in \mathbb{R}^3 , let $\Sigma = \partial H$, and let $p \in \Sigma$ be a basepoint (think "H is a tubular neighborhood of a pinched tangle T"). Let $C = (\operatorname{int} H)^c$ and let $\tau \colon \pi_1(C) \to H^1(H; \mathbb{Z}) \cong \mathbb{Z}^g$ be induced by Alexander (?) duality. Let $\tilde{\Sigma} \subset \tilde{C}$ be the τ -covers of $\Sigma \subset C$, respectively, with covering projections ϕ . Let $\tilde{p} = \phi^{-1}(p)$; it is a copy of \mathbb{Z}^g . Let $R \coloneqq \mathbb{Z}H^1(H; \mathbb{Z}) \cong \mathbb{Z}[T_i^{\pm 1}]_{i=1}^g$ be the group ring of $H^1(H; \mathbb{Z})$, the ring of Laurent polynomials in variables T_1, \ldots, T_g , and note that $\Omega_g \coloneqq H_1(\tilde{\Sigma}, \tilde{p})$ and $H_1(\tilde{C}, \tilde{p})$ are R-modules and that Ω_g does not depend on the embedding of H.

Definition 1. $A(H) \coloneqq H_1(\tilde{C})$, the Alexander module of H, and $AL(H) \coloneqq \ker i_* \colon \Omega_g \to H_1(\tilde{C}, \tilde{p})$, the Alexander Lagrangian of H.

Note that if H is a tubular neighborhood of a knot K then A(H) is the standard Alexander module of K. Note that i_*

is always surjective so we have the exact sequence

$$0 \longrightarrow AL(H) \longrightarrow \Omega_g \xrightarrow{i_*} H_1(\tilde{C}, \tilde{p}) \longrightarrow 0.$$

The following, coming from $\tilde{p} \to \tilde{C} \to (\tilde{C}, \tilde{p})$, is also exact, and non-canonically split:

$$\begin{array}{cccc} 0 \longrightarrow H_1(\tilde{C}) \longrightarrow H_1(\tilde{C}, \tilde{p}) \longrightarrow H_0(\tilde{p}) \longrightarrow H_0(\tilde{C}) \longrightarrow 0 \\ \\ & & & \\ &$$

where ϵ is the augmentation map. And so with $R_0 = \ker \epsilon$, $A(H) \oplus R_0 \cong H_1(\tilde{C}, \tilde{p}) \cong \Omega_g / AL(H)$, where the first isomorphism is non-canonical. In the knot case the isomorphism is canonical.