```
In[v]:= << KnotTheory`
    Loading KnotTheory` version of February 2, 2020, 10:53:45.2097.
    Read more at http://katlas.org/wiki/KnotTheory.
mn[v]:= RotateToMinimal[L_] := Module[
        {bestl = L, rotatedl = RotateLeft[l]},
        While[rotatedl =!= L,
            bestl = First[Sort[{bestl, rotatedl}]];
            rotatedl = RotateLeft[rotatedl]
        ];
        bestl
        ];
    pd = PD[Knot[11, Alternating, 53]]
    KnotTheory: Loading precomputed data in DTCode4KnotsTo11`
```

KnotTheory: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summe+pf 2005.

Outfol $=\operatorname{PD}[\mathrm{X}[4,2,5,1], \mathrm{X}[8,3,9,4], \mathrm{X}[14,6,15,5]$, $X[16,7,17,8], X[2,9,3,10], X[18,11,19,12], X[20,13,21,14]$, $\mathrm{X}[22,16,1,15], \mathrm{X}[10,17,11,18], \mathrm{X}[12,19,13,20], \mathrm{X}[6,21,7,22]]$
$\ln [\cdot]:=\quad$ (Times @@
(pd /. X[i_ $\left.\left.j_{-}, k_{-}, L_{-}\right]: \rightarrow \operatorname{If}[P o s i t i v e Q @ X[i, j, k, L], \mathbf{c}[i, j] \mathbf{c}[l, k], \mathbf{c}[i, l] \mathbf{c}[j, k]]\right)$)
Out $[\cdot]=\mathrm{c}[1,5] \mathrm{c}[2,10] \mathrm{c}[3,9] \mathrm{c}[4,2] \mathrm{c}[5,15] \mathrm{c}[6,22] \mathrm{c}[7,17]$
c [8 , 4] c [9, 3] c[10, 18] c [11, 19] c[12, 20] c[13, 21] c[14, 6] c[15, 1]
c [16, 8] c [17, 11] c [18, 12] c[19, 13] c [20, 14] c [21, 7] c [22, 16]
$\ln [\cdot]:=$ cycles = (Times @@ (pd /. X[i_, $\left.j_{-}, k_{-}, L_{-}\right]: \rightarrow$
If[PositiveQ@X[i, j, $k, l], \operatorname{cyc}[i, j] \operatorname{cyc}[l, k], \operatorname{cyc}[i, l] \operatorname{cyc}[j, k]]) / /$.
cyc [$\left.i_{-}, m 1_{-}, j_{-}\right] \operatorname{cyc}\left[j_{-}, m 2_{-}, k_{-}\right]: \rightarrow \operatorname{cyc}[i, m 1, j, m 2, k] /$.
c_cyc $: \rightarrow$ RotateToMinimal@Most [c]
Out $[\cdot]=\operatorname{cyc}[3,9] \operatorname{cyc}[1,5,15] \operatorname{cyc}[7,17,11,19,13,21] \operatorname{cyc}[2,10,18,12,20,14,6,22,16,8,4]$
$\ln [\rho]:=$ cycles $=$ SortBy [List @@ cycles, First]
Out[$0=\{$ $\{\operatorname{cyc}[1,5,15], \operatorname{cyc}[2,10,18,12,20,14,6,22,16,8,4]$,
cyc $[3,9], \operatorname{cyc}[7,17,11,19,13,21]\}$
bl stands for "braid line".
$\ln [\theta]:=$ bl = cycles; Print[bl];
While[Length [bl] > 1,
m = bl【-1, 1】;
bl = Most [bl] /. m-1 \rightarrow Sequence @@ Prepend [Reverse@Last@bl, m-1];
Print[bl]
]

```
{cyc[1, 5, 15], cyc [2, 10, 18, 12, 20, 14, 6, 22, 16, 8, 4], cyc[3, 9], cyc [7, 17, 11, 19, 13, 21]}
{cyc[1, 5, 15], сус [2, 10, 18, 12, 20, 14, 6, 21, 13, 19, 11, 17, 7, 22, 16, 8, 4], сyc [3, 9]}
{cyc[1, 5, 15], cyc [2, 9, 3, 10, 18, 12, 20, 14, 6, 21, 13, 19, 11, 17, 7, 22, 16, 8, 4]}
{cyc[1, 4, 8, 16, 22, 7, 17, 11, 19, 13, 21, 6, 14, 20, 12, 18, 10, 3, 9, 2, 5, 15]}
ln[ ] := {1, 2, 3, 4} /. 3->{5, 6}
Out[\rho]={1, 2, {5, 6}, 4}
ln[f]:= {1, 2, 3, 4} /. 3 T Sequence @@ {5, 6}
Out[o]= {1, 2, 5, 6, 4}
```

