Our Algebras. Let $s l_{2+}^{\epsilon}:=L\langle y, b, a, x\rangle$ subject to $[a, x]=x,-y,[b, x]=\epsilon x$, and $x y-q y x=(1-A B) / \hbar$, where $q=\mathbb{e}^{\hbar \epsilon}$, $[b, y]=-\epsilon y,[a, b]=0,[a, y]=-y,[b, x]=\epsilon x$, and $[x, y]=A=\mathbb{e}^{-\hbar \epsilon a}$, and $B=\mathbb{e}^{-\hbar b}$. Set also $T=A^{-1} B=\mathbb{e}^{\hbar t}$. $\epsilon a+b$. So $t:=\epsilon a-b$ is central and if $\exists \epsilon^{-1}, s l_{2+}^{\epsilon} /\langle t\rangle \cong s l_{2}$. Indeed if ϵ is invertible, the map $\phi_{\epsilon}: s l_{2+}^{\epsilon} \rightarrow s l_{2+}^{1}$, defined by

$$
\phi_{\epsilon}(y, b, a, x)=(\epsilon y, \epsilon b, a, x),
$$

The Quantum Leap. Also decree that in $Q U$,

$$
\Delta(y, b, a, x)=\left(y_{1}+B_{1} y_{2}, b_{1}+b_{2}, a_{1}+a_{2}, x_{1}+A_{1} x_{2}\right)
$$

is an isomorphism of Lie algebras, and $s l_{2+}^{1} /\langle t\rangle \cong s l_{2+}^{1} /(a=b) \cong$

$$
S(y, b, a, x)=\left(-B^{-1} y,-b,-a,-A^{-1} x\right),
$$

$L\langle y, a, x\rangle /([a, x]=x,[a, y]=-y,[x, y]=2 a) \cong s l_{2}$.
U is either $C U=\mathcal{U}\left(s l_{2+}^{\epsilon}\right) \llbracket \hbar \rrbracket$ or $Q U=\mathcal{U}_{\hbar}\left(s s_{2+}^{\epsilon}\right)=$ and $R=\sum \hbar^{j+k} y^{k} b^{j} \otimes a^{j} x^{k} / j![k]_{q}!=1+\hbar r+O\left(\hbar^{2}\right)$, where $A\langle y, b, a, x\rangle \llbracket \hbar \rrbracket$ with $[a, x]=x,[b, y]=-\epsilon y,[a, b]=0,[a, y]=r=y \otimes x+b \otimes a$ satisfies CYBE, $\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0$.

