Dror Bar-Natan: Academic Pensieve: 2017-08:

Emails from Roland
August 23, 2017 10:58 PM
Dear Dror,
I believe normal ordering will yield a topology on our yax algebra and doubles in general. Referring to the presentation of the U_{h;\alpha,\beta} algebra on your monoblog,
set h = \alpha =1, we dont need them.
Now consider the algebra U generated by y,a,x, beta,T. We can (and do) order every monomial in the standard order y,a,x, beta,T. This extends to a linear bijection O: Q[[Y,A,X,B,T]]> U sending Y^kA^IX^mB^nT^o to y^ka^Ix^m beta^nT^o The map O introduces the usual topology on the power-series ring into U. May f have a PBV
That should do it, or am I missing something?
Best, Roland
Dear Dror,
I found a pleasing algebra automorphism Phi which in the U_{h,\alpha, \beta} conventions of the monoblog reads:
$D_{\rm bi}(y) = \Delta \Delta \{1\}_{\rm y}$
$Phi(x) = -A - (-1) y$ $Phi(x) = -B^{-1} x$ $Phi(a) = -a$ $Phi(b) = -b$
Enjoy Switzerland
Best,
Roland