Symmetries

THINGS

## The 17 Tiling Patterns: Gotta catch 'em all!

Math Union Guest Speaker, Thursday October 22 2015, University of Toronto MS 2173, 4:30PM

**Abstract.** My goal is to get you hooked, captured and unreleased until you find all 17 in real life, around you.

We all know know that the plane can be filled in different periodic manners: floor tiles are often square but sometimes hexagonal, bricks are often laid in an interlaced pattern, fabrics often carry interesting patterns. A little less known is that there are precisely 17 symmetry patterns for tiling the plane; not one more, not one less. It is even less known how easy these 17 are to identify in the patterns around you, how fun it is, how common some are, and how rare some others seem to be.

## Gotta catch 'em all!

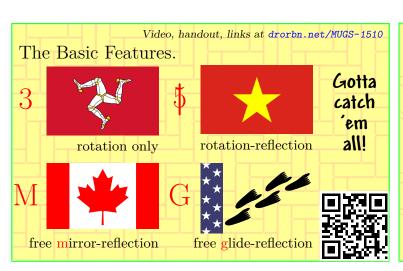
Reading. An excellent book on the subject is *The Symmetries of Things* by J. H. Conway, H. Burgiel, and C. Goodman-Strauss, CRC Press, 2008. Another nice text is *Classical Tessellations and Three-Manifolds* by J. M. Montesinos, Springer-Verlag, 1987.

**Question.** In what ways can you make \$2 change, using coins denominated  $\frac{1}{2}$ ,  $\frac{2}{3}$ ,  $\frac{3}{4}$ ,  $\frac{4}{5}$ ,  $\frac{5}{6}$ , etc.?

**Änswer.**  $2 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{2}{3} + \frac{2}{3} + \frac{2}{3} = \frac{3}{4} + \frac{3}{4} + \frac{1}{2} = \frac{5}{6} + \frac{2}{3} + \frac{1}{2}$ , and that's it.

Theorem. There are precisely 17 patterns with which to tile the

plane, no more, no less. They are all made of combinations of



| the      | the 10 basic features, 2, 3, 4, 6, 2, 3, 4, 6, M, and G, as follows: |          |                       |          |               |            |                       |  |
|----------|----------------------------------------------------------------------|----------|-----------------------|----------|---------------|------------|-----------------------|--|
| <b>✓</b> | Dror's                                                               | Conway's | crystallo<br>-graphic | <b>√</b> | Dror's        | Conway's   | crystallo<br>-graphic |  |
|          | 2222                                                                 | 2222     | p2                    | (        | <b>33</b>     | 3*3        | p31m                  |  |
| H        | 333                                                                  | 333      | р3                    |          | 222           | 2*22       | cmm                   |  |
|          | 442                                                                  | 442      | p4                    | 5        | <b>22M</b>    | 22*        | pmg                   |  |
|          | 632                                                                  | 632      | р6                    | نبر      | $^{-}$ MM     | **         | pm                    |  |
| S        | 2222                                                                 | *2222    | pmm                   |          | $\mathbf{MG}$ | *o         | $_{ m cm}$            |  |
| 2        | 333                                                                  | *333     | p3m1                  | (        | GG            | 00         | pg                    |  |
| +2       | 442                                                                  | *442     | p4m                   |          | <b>22G</b>    | 22o        | pgg                   |  |
|          | 632                                                                  | *632     | p6m                   | 9        | Ø             | 0          | p1                    |  |
|          | 42                                                                   | 4*2      | p4g                   |          | ⊚ Dror Bar    | -Natan, Oc | tober 2014            |  |

\$50 prize to the first to find a "natural", verifiable, 333 within one hour drive of UofT!





