Abstract. Much as we can understand 3-dimensional objects by staring at their pictures and x-ray images and slices in 2dimensions, so can we understand 4 -dimensional objects by staring at their pictures and x-ray images and slices in 3-dimensions, capitalizing on the fact that we understand 3 -dimensions pretty well. So we will spend some time staring at and understanding various 2 -dimensional views of a 3-dimensional elephant, and then even more simply, various 2 -dimensional views of some 3dimensional knots. This achieved, we'll take the leap and visualize some 4-dimensional knots by their various traces in 3-dimensional ${ }^{\text {S }}$ space, and if we'll still have time, we'll prove that these knots are really knotted.

Flatlanders View an Elephant.

"The third dimension isn't $t^{\prime \prime}$

Knots.

with Ester Dalvit $\omega /$ Dal

$\omega / \mathrm{M} 2$

4D Knots.

Carter, Banach, Saito

ω / CS
Yet another 4D Knot.

Some Unknots

Thistlethwaite's unknot

Scharein's relaxation

Haken's unknot

Reidemeister' Theorem. Two knot diagrams represent the same 3D knot iff they differ by a sequence of "Reidemester moves":
$\underset{\sim}{\mathrm{R} 3}=$
 $3-{ }^{2}$ leyrings Prour ine arcs of a broken art diagern $14 b a B$ crossing is either mono-chromatic or tiv sod bod bad chromatic. Let $\lambda(K)$ be the number of such 3-colourings that K has.
Example. $\lambda(O)=3$ while $\lambda(\mathcal{S})=9$; so $\bigcirc \neq \mathcal{G}$.
A Knot
Table
There are many more!

7_{6}

Some knot theory books.
Colin C. Adams, The Knot Book, an Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Lociety, 2004.
Meike Akveld and Andrew Jobbings, Knots Unravelled, from Strings to Mathematics, Arbelos 2011.
J. Scott Carter and Masahico Saito, Knotted Surfaces and Their Diagrams, American Mathematical Society, 1997.
Peter Cromwell, Knots and Links, Cambridge University Press, 2004.
W.B. Raymond Lickorish, An Introduction to Knot Theory, Springer 1997.
"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified) * a dd some ∇_{1} info.

www.katlas.org

GraduateTerts
in Mathematics

