PolyPoly in Aarhus, Post Mortem
 July-31-15 8:58 AM

I failed to emphasize that \$\Gamma\$-calculus leads to a polynomial time algorithm.

XA: Polyank K ohtsuki @Hainn shrinu, kyoto
XB: Add some Dufilld stats?

Dior Bar-Natan: Talks: Aarhus-1507:
Dror Bar-Natan: Talks: Aarhus-1507:
wEß:=http://www.math.toronto.edu/-drorbn/Talks/Aarhus-1507/ momorphic universal finite type invariant Z^{w} of pure w-tangles. meta-monoid is a functor M : (finite sets,
$Z^{w}:=\log Z^{w}$ takes values in $F L(S)^{S} \times C W(S)$. z is computable. z of the Borromean tangle, to degree $5[\mathrm{BN}]$:

(I have a fancy free-Lie calculator!)
Proposition [BN]. Modulo all relations that universally hold for the 2 D non-Abelian Lie algebra and after some changes-ofvariable, z^{w} reduces to z_{0}.

V. Jones

Contains the Jones and Alexander polynomials,

$=0$, only one co-bracket is allowed.
Nice, but too hard

C

injections) \rightarrow (sets) (think " $M(S)$ is quantum G^{S} ", for G a group) along with natural operations $*: M\left(S_{1}\right) \times M\left(S_{2}\right) \rightarrow M\left(S_{1} \sqcup S_{2}\right)$ whenever $S_{1} \cap S_{2}=\emptyset$ and $m_{c}^{a b}: M(S) \rightarrow M((S \backslash\{a, b\}) \sqcup\{c\})$ whenever $a \neq b \in S$ and $c \notin S \backslash\{a, b\}$, such that

$$
\text { meta-associativity: } \quad m_{a}^{a b} / / m_{a}^{a c}=m_{b}^{b c} / / m_{a}^{a b}
$$

meta-locality: $m_{c}^{a b} / / m_{f}^{d e}=m_{f}^{d e} / / m_{c}^{a b}$
and, with $\epsilon_{b}=M(S \hookrightarrow S \sqcup\{b\})$,

$$
\text { meta-unit: } \quad \epsilon_{b} / / / m_{a}^{a b}=I d=\epsilon_{b} / / m_{a}^{b a} .
$$

Claim. Pure virtual tangles $P T$ form a meta-monoid.
Theorem. $S \mapsto \Gamma_{0}(S)$ is a meta-monoid and $z_{0}: P T \rightarrow \Gamma_{0}$ is a morphism of meta-monoids.
Strong Conviction. There exists an extension of Γ_{0} to a bigger meta-monoid $\Gamma_{01}(S)=\Gamma_{0}(S) \times \Gamma_{1}(S)$, along with an extension of z_{0} to $z_{01}: A T \rightarrow \Gamma_{01}$, with

$$
\left.\Gamma_{1}(S)<V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus \mathcal{S}^{2}(V)^{\otimes 2} \quad \text { (with } V:=\langle S\rangle\right) .
$$

Furthermore, upon reducing to a single variable everything is polynomial size and polynomial time.
Furthermore, Γ_{01} is given using a "meta-2-cocycle $\rho_{c}^{a b}$ over Γ_{0} ": In addition to $m_{c}^{a b} \rightarrow m_{0 c}^{a b}$, there are R_{S}-linear $m_{1 c}^{a b}: \Gamma_{1}(S \cup$ $\{a, b\}) \rightarrow \Gamma_{1}(S \sqcup\{c\})$, a meta-right-action $\alpha^{a b}: \Gamma_{1}(S) \times \Gamma_{0}(S) \rightarrow$ $\Gamma_{1}(S) R_{S}$-linear in the first variable, and a first order differential operator (over $\left.R_{S}\right) \rho_{c}^{a b}: \Gamma_{0}(S \sqcup\{a, b\}) \rightarrow \Gamma_{1}(S \sqcup\{c\})$ such that

$$
\left(\zeta_{0}, \zeta_{1}\right) / / m_{c}^{a b}=\left(\zeta_{0} / / m_{0 c}^{a b},\left(\zeta_{1}, \zeta_{0}\right) / / / \alpha^{a b} / / / m_{1 c}^{a b}+\zeta_{0} / / \rho_{c}^{a b}\right)
$$

What's missing? Some commutation relations and exponentiated commutation relations and a lot of detail-sensitive work.

A bit about ribbon knots. A "ribbon knot" is a knot that can be presented as the boundary of a disk that has "ribbon singularities", but no "clasp singularities". A "slice knot" is a knot in $S^{3}=\partial B^{4}$ which is the boundary of a non-singular disk in B^{4}. Every ribbon knots is clearly slice, yet,
Conjecture. Some slice knots are not ribbons $/ \dot{c}$ Fox-Milnor. The Alexander polynomial of a ribbon knot is alpays of the form $A(t)=f(t) f(1 / t)$.

 jects I-II, $\omega \in /$ /WKO1, $\omega \varepsilon / / \mathrm{WKO} 2$, arXiv: 1405.1956, arXiv:1405.1955.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv: 1302.5689.
[CT] D. Cimasoni and V. Turaev, A Lagrangian Representation of Tangles, Topology 44 (2005) 747-767, arXiv:math.GT/0406269.
[En] B. Enriquez, A Cohomological Construction of Quantization Functors of Lie Bialgebras, Adv. in Math. 197-2 (2005) 430-479, arXiv:math/0212325.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematical 2 (1996) 1-41, arXiv:q-alg/9506005.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property $2 R$ and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601
[KLW] P. Kirk, C. Livingston, and Z. Wang, The Gassier Representation for String Links, Comm. Cont. Math. 3 (2001) 87-136, arXiv:math/9806035.
[LD] J. Y. Le Dimet, Enlacements d'Intervalles et Représentation de Gassier: Comment. Math. Helv. 67 (1992) 306-315.
Help Needed!

[GST]: a slice knot that might not be ribbon (48 crossings).
"God created the knots, all else in
topology is the work of mortals."
"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)
www.katlas.org
\square

Also include refs to the Lawrence representations and to Ito's papers).

