 computational complexity. "Real time" machines, such as our brains, only run linear time algorithms, and there's still a lot we don't know. Anything we learn about things doable in linear time is truly valuable. Polynomial time we can in-practice run, even if we have to wait; these things are still valuable. Exponential time we can play with, but just a little, and exponential things must be beautiful or philosophically compelling to deserve attention. Values further diminish and the aesthetic-or-philosophical bar further rises as we go further slower, or un-computable, or ZFC-style intrinsically infinite, or large-cardinalish, or beyond.
I will explain some things I know about polynomial time knot polynomials and explain where there's more, within reach.

- Finitely presented.
(meta-associativity: $m_{a}^{a b} / / m_{a}^{a c}=m_{b}^{b c} / / m_{a}^{a b}$)
- Divide and conquer proofs and computations. $U \in \mathcal{T}_{n}$
- "Algebraic Knot Theory": If K is ribbon,
$z(K) \in\left\{c l_{2}(\zeta): c l_{1}(\zeta)=1\right\}$.
(Genus and crossing number are also definable properties).

Theorem 1. \exists ! an invariant z_{0} : \{pure framed S-component tangles $\} \rightarrow \Gamma_{0}(S):=R \times M_{S \times S}(R)$, where $R=R_{S}=\mathbb{Z}\left(\left(T_{a}\right)_{a \in S}\right)$ is the ring of rational functions in S variables, intertwining
\(\left($$
\begin{array}{c|l|l}\omega_{1} & S_{1} \\
\hline S_{1} & A_{1}\end{array}
$$, \begin{array}{l|l|ll}\omega_{2} \& S_{2} \\

\hline S_{2} \& A_{2}\end{array}\right) \xrightarrow{\sqcup}\)| $\omega_{1} \omega_{2}$ | S_{1} |
| :---: | :---: |
| S_{2} | |
| S_{1} | A_{1} |
| S_{2} | 0 |
| | A_{2} |,

ω	a	b	S	
a	α	β	θ	
b	γ	δ	ϵ	$T_{a}, T_{b} \rightarrow T_{c}$
S	ϕ	ψ	Ξ	$\begin{array}{c}\text { T } \\ \mu:=1-\beta\end{array}$

\hline c \& \gamma+\alpha \delta / \mu \& \epsilon+\delta \theta / \mu \\
S \& \phi+\alpha \psi / \mu \& \Xi+\psi \theta / \mu\end{array}\right)\),
and satisfying $\left(\left.\right|_{a} ;{ }_{a} \widetilde{\gamma}_{b}, b^{\chi_{a}}\right) \xrightarrow{z_{0}}\left(\begin{array}{c|c}1 & a \\ \hline a & 1\end{array} ; \begin{array}{c|cc}1 & a & b \\ \hline a & 1 & 1-T_{a}^{ \pm 1} \\ b & 0 & T_{a}^{ \pm 1}\end{array}\right)$.
In Addition \bullet The matrix part is just a stitching formula for Burau/Gassner [LD, KLW, CT].

- $K \mapsto \omega$ is Alexander, mod units.
- $L \mapsto(\omega, A) \mapsto \omega \operatorname{det}^{\prime}(A-I) /\left(1-T^{\prime}\right)$ is the MVA, mod units.
- The "fastest" Alexander algorithm.
- There are also formulas for strand deletion, reversal, and doubling.
- Every step along the computation is the invariant of something.
- Extends to and more naturally defined on v / w-tangles.
- Fits in one column, including propaganda \& implementation.

Implementation key idea:

$\left(\omega, A=\left(\alpha_{a b}\right)\right) \leftrightarrow$

$$
m_{a_{-}-c_{-}}\left[\Gamma\left[\omega_{-}, \lambda_{-}\right]\right]:=\operatorname{Module}[\{\alpha, \beta, \gamma, \delta, \theta, \epsilon, \phi, \psi, \Xi, \mu\},
$$

$\left(\omega, \lambda=\sum \alpha_{a b} t_{a} h_{b}\right)$
 Collect [λ, h_{-}, Collect [\#, t_{-}, Factor] δ]];
ormat $\left[\mathrm{r}\left[\omega_{-}, \lambda_{-}\right]\right]:=\operatorname{Module}[\{\mathrm{s}, \mathrm{M}\}$,
$s=$ Unionecases $\left[r[\omega, \lambda],(h \mid t)_{a_{-}}: a, \infty\right]$;

$$
\Gamma\left[(\mu=1-\beta) \omega,\left\{\mathbf{t}_{c}, 1\right\} \cdot\left(\begin{array}{c}
\gamma+\alpha \delta / \mu \\
\phi+\alpha \psi / \mu \\
+\alpha+\delta \theta / \mu \\
E+\psi \theta / \mu
\end{array}\right) \cdot\left\{\mathbf{h}_{c}, 1\right\}\right]
$$

$\mathrm{M}=\operatorname{Outer}\left[\right.$ Factor $\left.\left[\mathrm{d}_{\mathrm{h}_{z_{2}} \mathrm{tan}_{2}} \lambda\right] \&, \mathrm{~s}, \mathrm{~s}\right]$;

$$
\text { /. } \left.\left\{\mathbf{T}_{a} \rightarrow \mathbf{T}_{c}, \mathbf{T}_{b} \rightarrow \mathbf{T}_{c}\right\} / / \text { rcollect }\right] ;
$$

$M=\operatorname{Prepend}\left[M, \mathrm{t}_{n} \& / \otimes \mathrm{s}\right] / /$ Transpose;

$$
M=\operatorname{Prepend}\left[M, \text { Prepend }\left[\mathrm{h}_{\neq} \& / ® \mathrm{~s}, \omega\right]\right] ;
$$

$$
\mathcal{R P}_{a_{-} b_{-}}:=\Gamma\left[1,\left\{t_{a}, t_{b}\right\} \cdot\left(\begin{array}{cc}
1 & 1-T_{a} \\
0 & T_{a}
\end{array}\right) \cdot\left\{h_{h_{a}}, h_{b}\right\}\right] ;
$$

M // MatrixForm]; \qquad

Meta-Associativity
$S=\Gamma\left[\omega,\left\{t_{1}, t_{2}, t_{3}, t_{S}\right\} \cdot\left(\begin{array}{cccc}\alpha_{11} & \alpha_{12} & \alpha_{13} & \theta_{1} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \theta_{2} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \theta_{3} \\ \phi_{1} & \phi_{2} & \phi_{3} & \Xi\end{array}\right) \cdot\left\{h_{1}, h_{2}, h_{3}, h_{S}\right\}\right] ;$
$\left(\zeta / / \mathrm{m}_{12 \rightarrow 1} / / \mathrm{m}_{13 \rightarrow 1}\right)=\left(\zeta / / \mathrm{m}_{23 \rightarrow 2} / / \mathrm{m}_{12 \rightarrow 1}\right)$
True _ _ R3
. . divide and conquer!
$\left\{\mathrm{Rm}_{51} \mathrm{Rm}_{62} \mathrm{Rp}_{34} / / \mathrm{m}_{14 \rightarrow 1} / / \mathrm{m}_{25 \rightarrow 2} / / \mathrm{m}_{36 \rightarrow 3}\right.$,
$\left.\mathrm{Rp}_{61} \mathrm{Rm}_{24} \mathrm{Rm}_{35} / / \mathrm{m}_{14 \rightarrow 1} / / \mathrm{m}_{25 \rightarrow 2} / / \mathrm{m}_{36 \rightarrow 3}\right\}$

$\left(\begin{array}{cccc}1 & h_{1} & h_{2} & h_{3} \\ t_{1} & \frac{T_{3}}{T_{2}} & 0 & 0 \\ t_{2} & \frac{-1+T_{2}}{T_{2}} & \frac{1}{T_{3}} & 0 \\ t_{3} & -\frac{-1+T_{3}}{T_{2}} & \frac{-1+T_{3}}{T_{3}} & 1\end{array}\right),\left(\begin{array}{cccc}1 & h_{1} & h_{2} & h_{3} \\ t_{1} & \frac{T_{3}}{T_{2}} & 0 & 0 \\ t_{2} & \frac{-1+T_{2}}{T_{2}} & \frac{1}{T_{3}} & 0 \\ t_{3} & -\frac{-1+T_{3}}{T_{2}} & \frac{-1+T_{3}}{T_{3}} & 1\end{array}\right)$
$z^{\prime}=\operatorname{Rm}_{12,1} \mathrm{Rm}_{27} \mathrm{Rm}_{83} \mathrm{Rm}_{4,11} \mathrm{Rp}_{16,5} \mathrm{Rp}_{6,13} \mathrm{Rp}_{14,9} \mathrm{Rp}_{10,15}$; Do $\left[z=z / / m_{1 k \rightarrow 1},\{k, 2,16\}\right] ;$
Z

$$
\binom{11-\frac{1}{\mathrm{~T}_{1}^{3}}+\frac{4}{\mathrm{~T}_{1}^{2}}-\frac{8}{\mathrm{~T}_{1}}-8 \mathrm{~T}_{1}+4 \mathrm{~T}_{1}^{2}-\mathrm{T}_{1}^{3} \mathrm{~h}_{1}}{\mathrm{t}_{1}} \rightarrow\left(\begin{array}{c}
\square \\
-8_{17}^{2}
\end{array}\right.
$$

Closed Components. The Halacheva trace satisfies $m_{c}^{a b} / / \operatorname{tr}_{c}=$ $m_{c}^{b a} / / \mathrm{tr}_{c}$ and computes the MVA for all links in the atlas, but its domain is not understood:

$$
\left.\begin{array}{c|cc}
\omega & c & S \\
\hline c & \alpha & \theta \\
S & \psi & \Xi
\end{array} \underset{\mu:=1-\alpha}{\operatorname{tr}_{c}} \quad \frac{\mu \omega}{S} \right\rvert\, \begin{gathered}
\Xi+\psi \theta / \mu
\end{gathered}
$$

$\operatorname{tr}_{\mathrm{c}_{-}}\left[\Gamma\left[\omega_{-}, \lambda_{-}\right]\right]:=\operatorname{Module}[\{\alpha, \theta, \psi, \Xi\}$,

$$
\left(\begin{array}{ll}
\alpha & \theta \\
\psi & \mathrm{g}
\end{array}\right)=\left(\begin{array}{cc}
\partial_{\mathrm{t}_{\mathrm{c}}, \mathrm{~h}_{\mathrm{c}}} \lambda & \partial_{\mathrm{t}_{\mathrm{c}}} \lambda \\
\partial_{\mathrm{h}_{\mathrm{c}}} \lambda & \lambda
\end{array}\right) /(\mathrm{t} \mid \mathrm{h})_{\mathrm{c}} \rightarrow 0 ;
$$

$$
\Gamma[\omega(1-\alpha), \Xi+\psi * \theta /(1-\alpha)] / / \Gamma \text { Collect }] ;
$$

$$
\left(\zeta / / \mathrm{m}_{12 \rightarrow 1} / / \mathrm{tr}_{1}\right)=\left(\zeta / / \mathrm{m}_{21 \rightarrow 1} / / \mathrm{tr}_{1}\right)
$$

True

Weaknesses. - $m_{c}^{a b}$ and tr_{c} are non-linear. - The product ωA is always Laurent, but my current proof takes induction with exponentially many conditions. • I still don't understand tr_{c}. • I still don't understand "unitarity". Where does it come from?

Let $I:=\langle 久-X\rangle$. Then $\mathcal{A}^{v}:=\Pi I^{n} / I^{n+1}=$ "universal $\left.\mathcal{U}(D g)\right)^{\otimes S "}=$

Fine print: No sources no sinks, AS vertices, internally acyclic, deg = (\#vertices)/2. Theorem. [EK, En] There exists a homomorphic expansion (universal finite type invariant) $Z: v T \rightarrow \mathcal{A}^{v}$.
Too hard! Let's look for "meta-monoid" quotients. The w Quotient

$$
=0
$$

$\mathcal{A}^{w} \cong \mathcal{U}\left(F L(S)^{S} \ltimes C W(S)\right)$

Theorem 2 [BND]. ヨ! a homomorphic expansion, aka a ho- Definition. (Compare [BNS, BN]) A The Abstract Context
momorphic universal finite type invariant Z^{w} of pure w-tangles. $z^{w}:=\log Z^{w}$ takes values in $F L(S)^{S} \times C W(S)$.
z is computable. z of the Borromean tangle, to degree $5[\mathrm{BN}]$:

(I have a fancy free-Lie calculator!)
Proposition [BN]. Modulo all relations that universally hold for the 2 D non-Abelian Lie algebra and after some changes-ofvariable, z^{w} reduces to z_{0}.

Nice, but too hard!

Contains the Jones and Alexander polynomials, $V \quad V$ still too hard!

The OneCo Quotient.

References.
[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, $\omega \varepsilon \beta / \mathrm{KBH}$, arXiv:1308.1721.
[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I-II, $\omega \varepsilon \beta / \mathrm{WKO} 1, \omega \varepsilon \beta / \mathrm{WKO} 2$, arXiv:1405.1956, arXiv:1405.1955.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[CT] D. Cimasoni and V. Turaev, A Lagrangian Representation of Tangles, Topology 44 (2005) 747-767, arXiv:math.GT/0406269.
[En] B. Enriquez, A Cohomological Construction of Quantization Functors of Lie Bialgebras, Adv. in Math. 197-2 (2005) 430-479, arXiv:math/0212325.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica 2 (1996) 1-41, arXiv:q-alg/9506005.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property $2 R$ and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.
[KLW] P. Kirk, C. Livingston, and Z. Wang, The Gassner Representation for String Links, Comm. Cont. Math. 3 (2001) 87-136, arXiv:math/9806035.
[LD] J. Y. Le Dimet, Enlacements d'Intervalles et Représentation de Gassner, Comment. Math. Helv. 67 (1992) 306-315.

Let's talk about China, America, Taiwan, economy, ecology, religion, democracy, censorship, and all else.
injections) \rightarrow (sets) (think " $M(S)$ is quantum $G^{S "}$, for G a group) along with natural operations $*: M\left(S_{1}\right) \times M\left(S_{2}\right) \rightarrow M\left(S_{1} \sqcup S_{2}\right)$ whenever $S_{1} \cap S_{2}=\emptyset$ and $m_{c}^{a b}: M(S) \rightarrow M((S \backslash\{a, b\}) \sqcup\{c\})$ whenever $a \neq b \in S$ and $c \notin S \backslash\{a, b\}$, such that meta-associativity: $\quad m_{a}^{a b} / / m_{a}^{a c}=m_{b}^{b c} / / m_{a}^{a b}$ meta-locality: $\quad m_{c}^{a b} / / m_{f}^{d e}=m_{f}^{d e} / / m_{c}^{a b}$ and, with $\epsilon_{b}=M(S \hookrightarrow S \sqcup\{b\})$,
meta-unit: $\quad \epsilon_{b} / / m_{a}^{a b}=I d=\epsilon_{b} / / m_{a}^{b a}$.
Claim. Pure virtual tangles $P T$ form a meta-monoid.
Theorem. $S \mapsto \Gamma_{0}(S)$ is a meta-monoid and $z_{0}: P T \rightarrow \Gamma_{0}$ is a morphism of meta-monoids.
Strong Conviction. There exists an extension of Γ_{0} to a bigger meta-monoid $\Gamma_{01}(S)=\Gamma_{0}(S) \times \Gamma_{1}(S)$, along with an extension of z_{0} to $z_{01}: P T \rightarrow \Gamma_{01}$, with

$$
\Gamma_{1}(S)<\langle S \sqcup S \times S \sqcup S \times S \times S \sqcup S \times S \times S \times S\rangle .
$$

Furthermore, upon reducing to a single variable everything is polynomial size and polynomial time.
Furthermore, Γ_{01} is given using a "meta-2-cocycle $\rho_{c}^{a b}$ over Γ_{0} ": In addition to $m_{c}^{a b} \rightarrow m_{0 c}^{a b}$, there are R_{S}-linear $m_{1 c}^{a b}: \Gamma_{1}(S \sqcup$ $\{a, b\}) \rightarrow \Gamma_{1}(S \sqcup\{c\})$, a meta-right-action $\alpha^{a b}: \Gamma_{1}(S) \times \Gamma_{0}(S) \rightarrow$ $\Gamma_{1}(S) R_{S}$-linear in the first variable, and a first order differential operator (over $\left.R_{S}\right) \rho_{c}^{a b}: \Gamma_{0}(S \sqcup\{a, b\}) \rightarrow \Gamma_{1}(S \sqcup\{c\})$ such that

$$
\left(\zeta_{0}, \zeta_{1}\right) / / m_{c}^{a b}=\left(\zeta_{0} / / m_{0 c}^{a b},\left(\zeta_{1}, \zeta_{0}\right) / / \alpha^{a b} / / m_{1 c}^{a b}+\zeta_{0} / / \rho_{c}^{a b}\right)
$$

What's missing? Some commutation relations and exponentiated commutation relations and a lot of detail-sensitive work.

A bit about ribbon knots. A "ribbon knot" is a knot that can be presented as the boundary of a disk that has "ribbon singularities", but no "clasp singularities". A "slice knot" is a knot in $S^{3}=\partial B^{4}$ which is the boundary of a non-singular disk in B^{4}. Every ribbon knots is clearly slice, yet,
Conjecture. Some slice knots are not ribbon.
Fox-Milnor. The Alexander polynomial of a ribbon knot is always of the form $A(t)=f(t) f(1 / t)$.

[GST]: a slice knot that might not be ribbon (48 crossings).

