Abstract. We will repeat the 3D story of the previous 3 talks one dimension up, in 4D. Surprisingly, there's more room in 4D, and things get easier, at least when we restrict our attention to "w-knots", or to "simply-knotted 2 -knots". But even then there are intricacies, and we try to go beyond simply-knotted, we are completely confused.

A Big Open Problem. δ maps w-knots onto simple 2-knots. To what extent is it a bijection? What other relations are required? In other words, find a simple description of simple 2-knots. Kawauchi [Ka] may already know the answer.

The Bracket-Rise Theorem. \mathcal{A}^{w} is isomorphic to

Corollaries. (1) Only wheels and isolated arrows persist: $\mathcal{A}^{w}\left(\uparrow_{n}\right) \cong \mathcal{U}\left(F L(n)_{t b}^{n} \ltimes C W(n)\right) \quad$ and $\quad \zeta:=\log Z \in F L(n)^{n} \times C W(n)$ has completely explicit formulas using natural $F L / C W$ operations [BN]. (2) Related to f.d. Lie algebras!

Low Algebra. With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$, we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

$$
\left.\longrightarrow \quad \sum_{i, j, k, l, m, n=1}^{\operatorname{dimg}} b_{i j}^{k} b_{k l}^{m} \varphi^{i} \varphi^{j} x_{n} x_{m} \varphi^{l} \in \mathcal{U}(I g):=\mathfrak{g}^{*} \rtimes \mathfrak{g}\right)
$$

Differential Ops. We can also interpret $\hat{\mathcal{U}}(\mathrm{Ig})$ as tangential differential operators on Fun(g): $\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator, and $x \in \mathfrak{g}$ becomes a tangential derivation, in the direction of the action of ad $x:(x \varphi)(y):=\varphi([x, y])$.
Too easy so far! Yet once you add "foam vertices", it gets related to the
Kashiwara-Vergne problem [KV] as told by Alekseev-Torossian [AT]:

Knot-Theoretic statement (simplified). There exists a homomorphic expansion Z for trivalent w-tangles. In particular, Z should respect $R 4$.
 Diagrammatic
ment (simplified). Let $R=\exp \uparrow \hat{\wedge} \in \mathcal{A}^{w}(\uparrow \uparrow)$. There exist $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that:

Algebraic statement (simplified). With $r \in \mathfrak{g}^{*} \otimes \mathfrak{g}$ the identity element and with $R=e^{r} \in \hat{\mathcal{U}}(I \mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $\left.V \in \hat{\mathcal{U}}(I g)\right)^{\otimes 2}$ so that $V(\Delta \otimes$ 1) $(R)=R^{13} R^{23} V$ in $\hat{\mathcal{U}}(I g)^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$

Unitary statement (simplified). There exists a unitary tangential differential operator V defined on $\operatorname{Fun}\left(\mathrm{g}_{x} \times \mathfrak{g}_{y}\right)$ so that $V \widehat{e^{x+y}}=\widehat{e^{x}} \widehat{e^{y}} V$ (allowing $\hat{\mathcal{U}}(\mathrm{g})$-valued functions)
Group-Algebra statement (simplified). For every $\phi, \psi \in \operatorname{Fun}(\mathfrak{g})^{G}$ (with small support), the following holds in $\hat{\mathcal{U}}(\mathfrak{g})$:

$$
\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) e^{x+y}=\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) e^{x} e^{y}
$$

(shhh, this is Duffo)
Unitary \Longrightarrow Group-Algebra. $\iint_{\text {俗 }} e^{x+y} \phi(x) \psi(y)=\left\langle 1, e^{x+y} \phi(x) \psi(y)\right\rangle=$ $\left\langle V 1, V e^{x+y} \phi(x) \psi(y)\right\rangle=\left\langle 1, e^{x} e^{y} V \phi(x) \psi(y)\right\rangle=\left\langle 1, e^{x} e^{y} \phi(x) \psi(y)\right\rangle=$ $\iint e^{x} e^{y} \phi(x) \psi(y)$.
Convolutions statement (Kashiwara-Vergne, simplified). Convolutions ${ }^{2}$ of invariant functions on a Lie group agree with convolutions of invariant functions on its Lie algebra. More accurately, let G be a finite dimensional Lie group and let g be its Lie algebra, and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(g)$ be given by $\Phi(f)(x):=f(\exp x)$. Then if $f, g \in \operatorname{Fun}(G)$ are Ad-invariant and supported near the identity, then $\Phi(f) \star \Phi(g)=\Phi(f \star g)$.
Convolutions and Group Algebras (ignoring all Jacobians). If G is finite, A is an algebra, $\tau: G \rightarrow A$ is multiplicative then $(\operatorname{Fun}(G), \star) \rightarrow(A, \cdot)$ via $L: f \mapsto \sum f(a) \tau(a)$. For Lie (G, g),

with $L_{0} \psi=\int \psi(x) e^{x} d x \in \hat{\mathcal{S}}(\mathfrak{g})$ and $L_{1} \Phi^{-1} \psi=\int \psi(x) e^{x} \in \hat{\mathcal{U}}(\mathrm{~g})$. Given $\psi_{i} \in \operatorname{Fun}(\mathfrak{g})$ compare $\Phi^{-1}\left(\psi_{1}\right) \star \Phi^{-1}\left(\psi_{2}\right)$ and $\Phi^{-1}\left(\psi_{1} \star \psi_{2}\right)$ in $\hat{\mathcal{U}}(\mathrm{g})$:
\star in $G: \iint \psi_{1}(x) \psi_{2}(y) e^{x} e^{y} \quad \star$ in $\mathfrak{g}: \iint \psi_{1}(x) \psi_{2}(y) e^{x+y}$ $u \leftrightarrow w$ The diagram on the right explains the relationship between associators and solutions of the Kashiwara-Vergne problem.

The Full

Question. Does it all extend to arbitrary 2-knots (not necessarily "simple")? To arbitrary codimension-2 knots?
BF Following [CR]. $A \in \Omega^{1}\left(M=\mathbb{R}^{4}, \mathfrak{g}\right), B \in \Omega^{2}\left(M, \mathfrak{g}^{*}\right)$,

$$
S(A, B):=\int_{M}\left\langle B, F_{A}\right\rangle
$$

With $\kappa:\left(S=\mathbb{R}^{2}\right) \rightarrow M, \beta \in \Omega^{0}(S, \mathfrak{g}), \alpha \in \Omega^{1}\left(S, \mathfrak{g}^{*}\right)$, set
 $O(A, B, \kappa):=\int \mathcal{D} \beta \mathcal{D} \alpha \exp \left(\frac{i}{\hbar} \int_{S}\left\langle\beta, d_{\kappa^{*} A} \alpha+\kappa^{*} B\right\rangle\right)$. The BF Feynman Rules. For an edge \bar{e}, let Φ_{e} be itsi direction, in S^{3} or S^{1}. Let ω_{3} and ω_{1} be volume forms on S^{3} and S_{1}. Then

Cattaneo (modulo some IHX-like relations).

See also [Wa]

Issues. - Signs don't quite work out, and BF seems to reproduce only "half" of the wheels invariant on simple 2-knots.

- There are many more configuration space integrals than BF Feynman diagrams and than just trees and wheels.
- I don't know how to define / analyze "finite type" for general 2-knots.
- I don't know how to reduce $Z_{B F}$ to combinatorics / algebra.

References.

[AT] A. Alekseev and C. Torossian, The Kashiwara-Vergne conjecture and Drinfeld's associators, Annals of Mathematics 175 (2012) 415-463, arXiv:0802.4300.
BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, ω / KBH, arXiv:1308.1721.
[BND1] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I: W-Knots and the Alexander Polynomial, $\omega / \mathrm{WKO} 1$, arXiv:1405.1956.
[BND2] D. Bar-Natan and Z. Dancso, Finite Type Invariants of WKnotted Objects II: Tangles and the Kashiwara-Vergne Problem, $\omega / \mathrm{WKO} 2$, arXiv:1405.1955.
[CS] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Math. Surv. and Mono. 55, Amer. Math. Soc., Providence 1998.
[CR] A. S. Cattaneo and C. A. Rossi, Wilson Surfaces and Higher Dimensional Knot Invariants, Commun. in Math. Phys. 256-3 (2005) 513-537, arXiv:math-ph/0210037.
[KV] M. Kashiwara and M. Vergne, The Campbell-Hausdorff Formula and Invariant Hyperfunctions, Invent. Math. 47 (1978) 249-272.
[Ka] A. Kawauchi, A Chord Diagram of a Ribbon Surface-Link, http://www.sci.osaka-cu.ac.jp/~kawauchi/.
[Wa] T. Watanabe, Configuration Space Integrals for Long n-Knots, the Alexander Polynomial and Knot Space Cohomology, Alg. and Geom. Top. 7 (2007) 47-92, arXiv:math/0609742.

