Commutators

Abstract. The commutator of two elements x and y in a group G is $x y x^{-1} y^{-1}$. That is, x followed by y followed by the inverse of x followed by the inverse of y. In my talk I will tell you how commutators are related to the following four riddles:

1. Can you send a secure message to a person you have never communicated with before (neither privately nor publicly), using a messenger you do not trust?
2. Can you hang a picture on a string on the wall using n nails, so that if you remove any one of them, the picture will fall?
3. Can you draw an n-component link (a knot made of n nonintersecting circles) so that if you remove any one of those n components, the remaining ($n-1$) will fall apart?
4. Can you solve the quintic in radicals? Is there a formula for the zeros of a degree 5 polynomial in terms of its coefficients, using only the operations on a scientific calculator?

Definition. The commutator of two elements x and y in a group G is $[x, y]:=x y x^{-1} y^{-1}$.
Example 1. In $S_{3},[(12),(23)]=(12)(23)(12)^{-1}(23)^{-1}=(123)$ and in general in $S_{\geq 3}$,

$$
[(i j),(j k)]=(i j k)
$$

Example 2. In $S_{\geq 4}$,

$$
[(i j k),(j k l)]=(i j k)(j k l)(i j k)^{-1}(j k l)^{-1}=(i l)(j k) .
$$

Example 3. In $S_{\geq 5}$,

$$
[(i j k),(k l m)]=(i j k)(k l m)(i j k)^{-1}(k l m)^{-1}=(j k m) .
$$

Example 4. So, in fact, in S_{5}, (123) = $[(412),(253)]=[[(341),(152)],[(125),(543)]]=$ [[[(234), (451)], [(315), (542)]], [[(312), (245)], [(154), (423)]]] = [[[[(123), (354)], [(245), (531)]], [[(231), (145)], [(154), (432)]]], $[[[(431),(152)],[(124),(435)]],[(215),(534)],[(142),(253)]]]]$.

Solving the Quadratic, $a x^{2}+b x+c=0: \delta=\sqrt{\Delta} ; \Delta=b^{2}-4 a c$; $r=\frac{\delta-b}{2 a}$.
Solving the Cubic, $a x^{3}+b x^{2}+c x+d=0: \Delta=27 a^{2} d^{2}-18 a b c d+$ $4 a c^{3}+4 b^{3} d-b^{2} c^{2} ; \delta=\sqrt{\Delta} ; \Gamma=27 a^{2} d-9 a b c+3 \sqrt{3} a \delta+2 b^{3} ;$ $\gamma=\sqrt[3]{\frac{\Gamma}{2}} ; r=-\frac{\frac{b^{2}-3 a c}{\gamma}+b+\gamma}{3 a}$.
Solving the Quartic, $a x^{4}+b x^{3}+c x^{2}+d x+e=0: \Delta_{0}=$ $12 a e-3 b d+c^{2} ; \Delta_{1}=-72 a c e+27 a d^{2}+27 b^{2} e-9 b c d+2 c^{3} ;$ $\Delta_{2}=\frac{1}{27}\left(\Delta_{1}^{2}-4 \Delta_{0}^{3}\right) ; u=\frac{8 a c-3 b^{2}}{8 a^{2}} ; v=\frac{8 a^{2} d-4 a b c+b^{3}}{8 a^{3}} ; \delta_{2}=\sqrt{\Delta_{2}} ;$ $Q=\frac{1}{2}\left(3 \sqrt{3} \delta_{2}+\Delta_{1}\right) ; q=\sqrt[3]{Q} ; S=\frac{\frac{\Delta_{0}}{q}+q}{12 a}-\frac{u}{6} ; s=\sqrt{S}$; $\Gamma=-\frac{v}{s}-4 S-2 u ; \gamma=\sqrt{\Gamma} ; r=-\frac{b}{4 a}+\frac{\gamma}{2}+s$.

Theorem. The is no general formula, using only the basic arithmetic operations and taking roots, for the solution of the quintic equation $a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x+f=0$.
Key Point. The "persistent root" of a closed path (path lift, in topological language) may not be closed, yet the persistent root of a commutators of closed paths is always closed.
Proof. Suppose there was a formula, and consider the corresponding "composition of machines" picture:

Now if $\gamma_{1}^{(1)}, \gamma_{2}^{(1)}, \ldots, \gamma_{16}^{(1)}$, are paths in X_{0} that induce permutations of the roots and we set $\gamma_{1}^{(2)}:=\left[\gamma_{1}^{(1)}, \gamma_{2}^{(1)}\right], \gamma_{2}^{(2)}:=\left[\gamma_{3}^{(1)}, \gamma_{4}^{(1)}\right], \ldots$, $\gamma_{8}^{(2)}:=\left[\gamma_{15}^{(1)}, \gamma_{16}^{(1)}\right], \gamma_{1}^{(3)}:=\left[\gamma_{1}^{(2)}, \gamma_{2}^{(2)}\right], \ldots, \gamma_{4}^{(3)}:=\left[\gamma_{7}^{(2)}, \gamma_{8}^{(2)}\right], \gamma_{1}^{(4)}:=\left[\gamma_{1}^{(3)}, \gamma_{2}^{(3)}\right], \gamma_{2}^{(4)}:=\left[\gamma_{3}^{(3)}, \gamma_{4}^{(3)}\right]$, and finally $\gamma^{(5)}:=\left[\gamma_{1}^{(4)}, \gamma_{2}^{(4)}\right]$ (all of those, commutators of "long paths"; I don't know the word "homotopy"), then $\gamma^{(5)} / / C / / / P_{1} / / R_{1} / / \cdots / / R_{4}$ is a closed path. Indeed,

- In X_{0}, none of the paths is necessarily closed.
- After C, all of the paths are closed.
- After P_{1}, all of the paths are still closed.
- After R_{1}, the $\gamma^{(1)}$,s may open up, but the $\gamma^{(2)}$'s remain closed.
- At the end, after $R_{4}, \gamma^{(4)}$'s may open up, but $\gamma^{(5)}$ remains closed.

But if the paths are chosen as in Example 4, $\gamma^{(5)} / / C / / P_{1} / / R_{1} / / \cdots / / R_{4}$ is not a closed path.
References. V.I. Arnold, 1960s, hard to locate.
V.B. Alekseev, Abel's Theorem in Problems and Solutions, Based on the Lecture of Professor V.I. Arnold, Kluwer 2004.
A. Khovanskii, Topological Galois Theory, Solvability and Unsolvability of Equations in Finite Terms, Springer 2014.
B. Katz, Short Proof of Abel's Theorem that 5th Degree Polynomial Equations Cannot be Solved, YouTube video,
 http://youtu.be/RhpVSV6iCko.

The Princess Bride, 1987. Inigo Montoya: You are using Bonetti's defense against me, uh?	do you? So she starts asking you some questions: Mr. Woolley, are you worried about the number of young people without jobs? Bernard Woolley: Yes
Man in Black: I thought it fitting, considering the rocky terrain.	\mathbf{H} : Are you worried about the rise in crime among teenagers? W: Yes
IM: Naturally, you must expect me to attack with Capo Ferro.	\mathbf{H} : Do you think there is a lack of discipline in our Comprehensive schools?
MiB: Naturally, but I find that Thibault cancels out Capo Ferro, don't you?	W: Yes
IM: Unless the enemy has studied his Agrippa, which I have!	H: Do you think young people welcome some authority and leadership in their
You are wonderful!	lives? W: Yes
MiB: Thank you. I've worked hard to becom	\mathbf{H} : Do you think they respond to a challenge? W: Yes
IM: I admit it, you are better than I am.	\mathbf{H} : Would you be in favour of reintroducing National Service?
MiB: Then why are you smiling?	W: Oh...well, I suppose I might be.
IM: Because I know something you don't know.	\mathbf{H} : Yes or no? W: Yes
MiB: And what is that? IM: I am not left-handed.	H: Of course you would, Bernard. After all you told me can't say no to that. So
MiB: You're amazing! IM: I ought to be after twenty years.	they don't mention the first five questions and they publish the last one. W: Is
MiB: There is something I ought to tell you. IM: Tell me.	that really what they do?
MiB: I'm not left-handed either. IM: Who are you?	H: Well, not the reputable ones no, but there aren't many of those. So alterna-
MiB: No one of consequence. IM: I must know.	tively the young lady can get the opposite result. W: How?
MiB: Get used to disappointment. \quad IM: Okay. Kill me quickly.	\mathbf{H} : Mr. Woolley, are you worried about the danger of war? W: Yes
MiB: I would as soon destroy a stained-glass window as an artist like yourself.	\mathbf{H} : Are you worried about the growth of armaments? W: Yes
However, since I can't have you following me either... Please understand	H: Do you think there is a danger in giving young people guns and teaching
I hold you in the highest respect.	them how to kill? W: Yes
	\mathbf{H} : Do you think it is wrong to force people to take up arms against their will?
Yes, Prime Minister, 1986.	W: Yes
Sir Humphrey: You know what happens: nice young lady comes up to you.	H: Would you oppose the reintroduction of National Service? W: Yes
Obviously you want to create a good impression, you don't want to look a fool	H: There you are, you see Bernard. The perfect balanced sample.

