
Abstract. I will describe acomputable, non-commutativeinva-
riant of tangles with values in wheels, almost generalize itto so-
me balloons, and then tell you why I care. Spoilers: tangles are
you know what, wheels are linear combinations of cyclic words
in some alphabet, balloons are 2-knots, and one reason I careis
because quantum field theory predicts more than I can actually
get (but also less).

Why I like “non-commutative”? With FA(xi) the free associative
non-commutative algebra,

dimQ[x, y]d ∼ d≪ 2d ∼ dimFA(x, y)d.

Why I like “computable”?
• Because I’m weird. • Note thatπ1 isn’t computable.
Preliminaries from Algebra.FL(xi)
denotes the free Lie algebra in (xi);
FL(xi) = (binary trees with AS ver-
tices and coloured leafs)/(IHX relations). There an obvious map
FA(FL(xi))→ FA(xi) defined by [a,b] → ab−ba, which in itself,
is IHX.

CW(xi) denotes the vector space of cyclic words in (xi): CW(xi) =
FA(xi)/(xiw = wxi). There an obvious mapCW(FL(xi)) →
CW(xi). In fact, connected uni-trivalent 2-in-1-out graphs with
univalents with colours in{1, . . . ,n}, modulo AS and IHX, is pre-
ciselyCW(xi):

Most important.ex =
∑ xd

d!
andex+y = exey.

Preliminaries from Knot Theory.

ω is practically computable!For the
Borromean tangle, to degree 5, the re-
sult is: (see [BN])

Proof of Invariance.

Further• ω is really the second part of a (trees,wheels)-valued
invariantζ = (λ, ω). The tree partλ is just a repa-
ckaging of the Milnorµ-invariants.
• On u-tangles,ζ is equivalent to the trees&wheels part of the

Kontsevich integral, except it is computable and is defined with
no need for a choice of parenthesization.
• On long/round u-knots,ω is equivalent to the Alexander poly-

nomial.
• The multivariable Alexander polynomial (and Levine’s facto-

rization thereof [Le]) is contained in the Abelianization of
ζ [BNS].
• ω vanishes on braids.
• Related to/ extends Farber’s [Fa]?
• Should be summed and categorified.
• Extends to v and descends to w:
meaning,ζ satisfies ω also satisfies soω’s “true domain” is

Facts

• Agrees with BN-Dancso [BND1, BND2] and with [BN].
• ζ, ω are universal finite type invariants.
• Using Ж : vKn → wKn+1, defines a strong invariant of v-

tangles/ long v-knots. (Ж in LATEX: ωεβ/zhe)

Doesω extend
to balloons?
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Video, links, and more @ Dror Bar-Natan: Talks: Hamilton-1412:
ωεβ≔http://www.math.toronto.edu/~drorbn/Talks/Hamilton-1412 Tangles, Wheels, Balloons
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Theorem. ω, the connected part of the procedure below, is an
invariant ofS-component tangles with values inCW(S):
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Need to show:
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Indeed,

a b a ba b11

= =

(thanks, Ester Dalvit)

http://www.math.toronto.edu/drorbn/Talks/Hamilton-1412/zhe
http://www.math.toronto.edu/~drorbn/Talks/Hamilton-1412
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Riddles, in case you are bored.
• Can you find uncountably many distinct subsets{Aα} of Z such

that wheneverα , β eitherAα ⊂ Aβ or Aβ ⊂ Aα?
• Can you find uncountably many distinct subsets{Bα} of Z such

that wheneverα , β the intersectionBα ∩ Bβ is finite?

Satoh
ωεβ/Dal

Dalvit

wK :=PA

“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org
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The BF Feynman Rules.For an edgee, let Φe be its
direction, inS3 or S1. Letω3 andω1 be volume forms
onS3 andS1. Then

ZBF =
∑

diagrams
D

[D]
|Aut(D)|

∫

R2
· · ·

∫

R2
︸     ︷︷     ︸

S-vertices

∫

R4
· · ·

∫

R4
︸     ︷︷     ︸

M-vertices

∏

red
e∈D

Φ∗eω3

∏

black
e∈D

Φ∗eω1

(modulo some IHX-like relations). See also [Wa]

degree= #(rattles)

ground
piece

air
piece

rattle

Issues.• Signs don’t quite work out, and BF seems to reproduce
only “half” of the wheels invariant on simple 2-knots.
• There are many more configuration space integrals than BF
Feynman diagrams and than just trees and wheels.
• I don’t know how to define/ analyze “finite type” for general
2-knots.
• I don’t know how to reduceZBF to combinatorics/ algebra.

Video, links, and more @ Dror Bar-Natan: Talks: Hamilton-1412:
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The Generators
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“v-xing”

ωεβ/F

The Double Inflation Procedureδ.
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A 4D knot by Carter and Saito [CS]

“broken surface diagram”

w-Knots.
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Simple 2-Knots.
Question.Does it all extend to arbitrary 2-knots (not necessarily
“simple”)? To arbitrary codimension-2 knots?

A Big Open Problem.δ maps w-knots onto simple 2-knots. To
what extent is it a bijection? What other relations are required?
In other words,find a simple description of simple 2-knots.

BF Following [CR]. A ∈ Ω1(M = R4, g), B ∈ Ω2(M, g∗),

S(A,B) ≔
∫

M
〈B, FA〉.

With κ : (S = R2)→ M, β ∈ Ω0(S, g), α ∈ Ω1(S, g∗), set

O(A,B, κ) ≔
∫

DβDαexp

(

i
~

∫

S
〈β,dκ∗Aα + κ

∗B〉

)

.

Rossi

2-Knot Story

The Full

Rewrites of IHX.

Even better,
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