Abstract. I will describe a computable, non-commutative invariant of tangles with values in wheels, almost generalize it to some balloons, and then tell you why I care. Spoilers: tangles are you know what, wheels are linear combinations of cyclic words in some alphabet, balloons are 2-knots, and one reason I care is because quantum field theory predicts more than I can actually get (but also less).
Why I like "non-commutative"? With $F A\left(x_{i}\right)$ the free associative non-commutative algebra,

$$
\operatorname{dim} \mathbb{Q}[x, y]_{d} \sim d \ll 2^{d} \sim \operatorname{dim} F A(x, y)_{d} .
$$

Why I like "computable"?

- Because I'm weird.
- Note that π_{1} isn't computable.

Preliminaries from Algebra. $F L\left(x_{i}\right)$ denotes the free Lie algebra in $\left(x_{i}\right)$; $F L\left(x_{i}\right)=$ (binary trees with AS ver-
 tices and coloured leafs)/(IHX relations). There an obvious map $F A\left(F L\left(x_{i}\right)\right) \rightarrow F A\left(x_{i}\right)$ defined by $[a, b] \rightarrow a b-b a$, which in itself, is IHX.

$C W\left(x_{i}\right)$ denotes the vector space of cyclic words in $\left(x_{i}\right): C W\left(x_{i}\right)=$ $F A\left(x_{i}\right) /\left(x_{i} w=w x_{i}\right)$. There an obvious map $C W\left(F L\left(x_{i}\right)\right) \rightarrow$ $C W\left(x_{i}\right)$. In fact, connected uni-trivalent 2 -in-1-out graphs with univalents with colours in $\{1, \ldots, n\}$, modulo AS and IHX, is precisely $C W\left(x_{i}\right)$:

Most important. $e^{x}=\sum \frac{x^{d}}{d!}$ and $e^{x+y}=e^{x} e^{y}$.
Preliminaries from Knot Theory.

Theorem. ω, the connected part of the procedure below, is an invariant of S-component tangles with values in $C W(S)$:

 ω is practically computable! For the Borromean tangle, to degree 5, the result is:
(see [BN])

Proof of Invariance.
Need to show:

Indeed,

(thanks, Ester Dalvit)

- ω is really the second part of a (trees, wheels)-valued Further invariant $\zeta=(\lambda, \omega)$. The tree part λ is just a repa-

Facts ckaging of the Milnor μ-invariants.

- On u-tangles, ζ is equivalent to the trees\&wheels part of the Kontsevich integral, except it is computable and is defined with no need for a choice of parenthesization.
- On long/round u-knots, ω is equivalent to the Alexander polynomial.
- The multivariable Alexander polynomial (and Levine's factorization thereof [Le]) is contained in the Abelianization of ζ [BNS].
- ω vanishes on braids.
- Related to / extends Farber's [Fa]?
- Should be summed and categorified.
- Extends to v and descends to w:
meaning, ζ satisfies ω also satisfies so ω 's "true domain" is

- Agrees with BN-Dancso [BND1, BND2] and with [BN].
- ζ, ω are universal finite type invariants.
- Using $Ж: v \mathcal{K}_{n} \rightarrow w \mathcal{K}_{n+1}$, defines a strong invariant of $v-$ tangles / long v-knots.
(K^{2} in LETEX: $\omega \in \beta /$ zhe)

A Big Open Problem. δ maps w-knots onto simple 2-knots. To what extent is it a bijection? What other relations are required? In other words, find a simple description of simple 2-knots.

Question. Does it all extend to arbitrary 2-knots (not necessarily "simple")? To arbitrary codimension- 2 knots?
BF Following [CR]. $A \in \Omega^{1}\left(M=\mathbb{R}^{4}, \mathfrak{g}\right), B \in \Omega^{2}\left(M, \mathfrak{g}^{*}\right)$,

$$
S(A, B):=\int_{M}\left\langle B, F_{A}\right\rangle
$$

With $\kappa:\left(S=\mathbb{R}^{2}\right) \rightarrow M, \beta \in \Omega^{0}(S, \mathfrak{g}), \alpha \in \Omega^{1}\left(S, \mathfrak{g}^{*}\right)$, set
 $O(A, B, \kappa):=\int \mathcal{D} \beta \mathcal{D} \alpha \exp \left(\frac{i}{\hbar} \int_{S}\left\langle\beta, d_{\kappa^{*} A} \alpha+\kappa^{*} B\right\rangle\right)$. The BF Feynman Rules. For an edge e, let Φ_{e} be its direction, in S^{3} or S^{1}. Let ω_{3} and ω_{1} be volume forms on S^{3} and S_{1}. Then Cattaneo
 (modulo some IHX-like relations).

See also [Wa]

Issues. • Signs don't quite work out, and BF seems to reproduce only "half" of the wheels invariant on simple 2-knots.

- There are many more configuration space integrals than BF Feynman diagrams and than just trees and wheels.
- I don't know how to define / analyze "finite type" for general 2-knots.
- I don't know how to reduce $Z_{B F}$ to combinatorics / algebra.

References.

[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, $\omega \in \beta / \mathrm{KBH}$, arXiv:1308.1721.
[BND1] D. Bar-Natan and Z. Dancso, Finite Type Invariants of WKnotted Objects I: W-Knots and the Alexander Polynomial, $\omega \varepsilon \beta / \mathrm{WKO1}$, arXiv:1405.1956.
[BND2] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects II: Tangles and the Kashiwara-Vergne Problem, $\omega \varepsilon \beta / \mathrm{WKO} 2$, arXiv:1405.1955.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
[CS] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Math. Surv. and Mono. 55, Amer. Math. Soc., Providence 1998.
[CR] A. S. Cattaneo and C. A. Rossi, Wilson Surfaces and Higher Dimensional Knot Invariants, Commun. in Math. Phys. 256-3 (2005) 513-537, arXiv:math-ph/0210037.
[Fa] M. Farber, Noncommutative Rational Functions and Boundary Links, Math. Ann. 293 (1992) 543-568.
[Le] J. Levine, A Factorization of the Conway Polynomial, Comment. Math. Helv. 74 (1999) 27-53, arXiv:q-alg/9711007.
[Wa] T. Watanabe, Configuration Space Integrals for Long n-Knots, the Alexander Polynomial and Knot Space Cohomology, Alg. and Geom. Top. 7 (2007) 47-92, arXiv:math/0609742.
"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified)
WWW.katlas.org The Knot Atla

