
Abstract. I will describe acomputable, non-commutativeinvari-
ant of tangles with values in wheels, almost generalize it tosome
balloons, and then tell you why I care. Spoilers: tangles areyou
know what, wheels are linear combinations of cyclic words in
some alphabet, balloons are 2-knots, and one reason I care isbe-
cause quantum field theory predicts more than I can actually get
(but also less).

Why I like “non-commutative”? With FA(xi) the free associative
non-commutative algebra,

dimQ[x, y]d ∼ d≪ 2d ∼ dimFA(x, y)d.

Why I like “computable”?
• Because I’m weird. • Note thatπ1 isn’t computable.
Preliminaries from Algebra.FL(xi)
denotes the free Lie algebra in (xi);
FL(xi) = (binary trees with AS ver-
tices and coloured leafs)/(IHX relations). There an obvious map
FA(FL(xi))→ FA(xi) defined by [a,b] → ab−ba, which in itself,
is IHX.

CW(xi) denotes the vector space of cyclic words in (xi): CW(xi) =
FA(xi)/(xiw = wxi). There an obvious mapCW(FL(xi)) →
CW(xi). In fact, connected uni-trivalent 2-in-1-out graphs with
univalents with colours in{1, . . . ,n}, modulo AS and IHX, is pre-
ciselyCW(xi):

Most important.ex =
∑ xd

d!
andex+y = exey.

Preliminaries from Knot Theory.

ζ is practically computable!For the Borromean
tangle, to degree 5, the result is:

Proof of Invariance.
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Video and more @ Dror Bar-Natan: Talks: Hamilton-1412:
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Theorem. ζ, the connected part of the procedure below, is an
invariant ofS-component tangles with values inCW(S):

http://www.math.toronto.edu/~drorbn/Talks/Hamilton-1412


“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org
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• Agrees with BN-Dancso [BND1, BND2] and with [BN]. • In-
practice computable!• Vanishes on braids.• Extends to w.•
Contains Alexander.• The “missing factor” in Levine’s factor-
ization [Le] (the rest of [Le] also fits, hence contains the MVA).
• Related to/ extends Farber’s [Fa]? • Should be summed and
categorified.
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