Abstract. I will describe a computable, non-commutative invari- ζ is practically computable! For the Borromean ant of tangles with values in wheels, almost generalize it to some tangle, to degree 5 , the result is: balloons, and then tell you why I care. Spoilers: tangles are you know what, wheels are linear combinations of cyclic words in some alphabet, balloons are 2-knots, and one reason I care is because quantum field theory predicts more than I can actually get (but also less).

Proof of Invariance.
Why I like "non-commutative"? With $F A\left(x_{i}\right)$ the free associative non-commutative algebra,

$$
\operatorname{dim} \mathbb{Q}[x, y]_{d} \sim d \ll 2^{d} \sim \operatorname{dim} F A(x, y)_{d} .
$$

Why I like "computable"?

- Because I'm weird.
- Note that π_{1} isn't computable.

Preliminaries from Algebra. $F L\left(x_{i}\right)$ denotes the free Lie algebra in $\left(x_{i}\right)$; $F L\left(x_{i}\right)=$ (binary trees with AS ver-
 tices and coloured leafs)/(IHX relations). There an obvious map $F A\left(F L\left(x_{i}\right)\right) \rightarrow F A\left(x_{i}\right)$ defined by $[a, b] \rightarrow a b-b a$, which in itself, is IHX.

$C W\left(x_{i}\right)$ denotes the vector space of cyclic words in $\left(x_{i}\right): C W\left(x_{i}\right)=$ $F A\left(x_{i}\right) /\left(x_{i} w=w x_{i}\right)$. There an obvious map $C W\left(F L\left(x_{i}\right)\right) \rightarrow$ $C W\left(x_{i}\right)$. In fact, connected uni-trivalent 2 -in-1-out graphs with univalents with colours in $\{1, \ldots, n\}$, modulo AS and IHX, is precisely $C W\left(x_{i}\right)$:

Most important. $e^{x}=\sum \frac{x^{d}}{d!}$ and $e^{x+y}=e^{x} e^{y}$.

Preliminaries from Knot Theory.

Theorem. ζ, the connected part of the procedure below, is an invariant of S-component tangles with values in $C W(S)$:

- Agrees with BN-Dancso [BND1, BND2] and with [BN]. • Inpractice computable! - Vanishes on braids. - Extends to w. Contains Alexander. • The "missing factor" in Levine's factorization [Le] (the rest of [Le] also fits, hence contains the MVA). - Related to / extends Farber's [Fa]? • Should be summed and categorified.

References.
[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, http://www.math.toronto.edu/~drorbn/papers/KBH/, arXiv:1308.1721.
[BND1] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I: W-Knots and the Alexander Polynomial, http://drorbn.net/AcademicPensieve/Projects/WK01, arXiv:1405.1956.
[BND2] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects II: Tangles and the Kashiwara-Vergne Problem, http://drorbn.net/AcademicPensieve/Projects/WK02, arXiv:1405.1955.
[CR] A. S. Cattaneo and C. A. Rossi, Wilson Surfaces and Higher Dimensional Knot Invariants, Commun. in Math. Phys. 256-3 (2005) 513-537, arXiv:math-ph/0210037.
[Fa] M. Farber, Noncommutative Rational Functions and Boundary Links, Math. Ann. 293 (1992) 543-568.
[Le] J. Levine, A Factorization of the Conway Polynomial, Comment. Math. Helv. 74 (1999) 27-53, arXiv:q-alg/9711007.
[Wa] T. Watanabe, Configuration Space Integrals for Long n-Knots, the Alexander Polynomial and Knot Space Cohomology, Alg. and Geom. Top. 7 (2007) 47-92, arXiv:math/0609742.

"God created the knots, all else in

 topology is the work of mortals."