What happens to a quantum particle on a pendulum at $T = \frac{\pi}{2}$?

Abstract. This subject is the best one-hour introduction I know for the mathematical techniques that appear in quantum mechanics — in one short lecture we start with a meaningful question, visit Schrödinger's equation, operators and exponentiation of operators, Fourier analysis, path integrals, the least action principle, and Gaussian integration, and at the end we land with a meaningful and interesting answer.

Based a lecture given by the author in the "trivial notions" seminar in Harvard on April 29, 1989. This edition, December 2, 2014.

1. The Question

Let the complex valued function $\psi=\psi(t,x)$ be a solution of the Schrödinger equation

$$\frac{\partial \psi}{\partial t} = -i\left(-\frac{1}{2}\Delta_x + \frac{1}{2}x^2\right)\psi$$
 with $\psi|_{t=0} = \psi_0$

What is $\psi|_{t=T=\frac{\pi}{2}}$?

In fact, the major part of our discussion will work just as well for the general Schrödinger equation,

$$\frac{\partial \psi}{\partial t} = -iH\psi, \qquad H = -\frac{1}{2}\Delta_x + V(x),$$

$$\psi|_{t=0} = \psi_0,$$
 arbitrary T ,

where,

- ψ is the "wave function", with $|\psi(t,x)|^2$ representing the probability of finding our particle at time t in position x.
- *H* is the "energy", or the "Hamiltonian".
- $-\frac{1}{2}\Delta_x$ is the "kinetic energy".
- V(x) is the "potential energy at x".

2. The Solution

The equation $\frac{\partial \psi}{\partial t} = -iH\psi$ with $\psi|_{t=0} = \psi_0$ formally implies

$$\psi(T,x) = \left(e^{-iTH}\psi_0\right)(x) = \left(e^{i\frac{T}{2}\Delta - iTV}\psi_0\right)(x).$$

By Lemma 3.1 with $n = 10^{58} + 17$ and setting $x_n = x$ we find that $\psi(T, x)$ is

$$\left(e^{i\frac{T}{2n}\Delta}e^{-i\frac{T}{n}V}e^{i\frac{T}{2n}\Delta}e^{-i\frac{T}{n}V}\dots e^{i\frac{T}{2n}\Delta}e^{-i\frac{T}{n}V}\psi_0\right)(x_n).$$

Now using Lemmas 3.2 and 3.3 we find that this is: (c denotes the ever-changing universal fixed numerical constant)

$$c \int dx_{n-1} e^{i\frac{(x_n - x_{n-1})^2}{2T/n}} e^{-i\frac{T}{N}V(x_{n-1})} \dots$$

$$\int dx_1 e^{i\frac{(x_2 - x_1)^2}{2T/n}} e^{-i\frac{T}{N}V(x_1)}$$

$$\int dx_0 e^{i\frac{(x_1 - x_0)^2}{2T/n}} e^{-i\frac{T}{N}V(x_0)} \psi_0(x_0).$$

Repackaging, we get

$$c \int dx_0 \dots dx_{n-1}$$

$$\exp\left(i\frac{T}{2n}\sum_{k=1}^n \left(\frac{x_k - x_{k-1}}{T/n}\right)^2 - i\frac{T}{n}\sum_{k=0}^{n-1} V(x_k)\right)$$

$$\psi_0(x_0).$$

Now comes the novelty. keeping in mind the picture and replacing Riemann sums by integrals, we can write

$$\psi(T, x) = c \int dx_0 \int_{W_{x_0 x_n}} \mathcal{D}x$$

$$\exp\left(i \int_0^T dt \left(\frac{1}{2}\dot{x}^2(t) - V(x(t))\right)\right) \psi_0(x_0),$$

where $W_{x_0x_n}$ denotes the space of paths that begin at x_0 and end at x_n ,

$$W_{x_0x_n} = \{x : [0,T] \to \mathbb{R} : \ x(0) = x_0, \ x(T) = x_n\},\$$

and $\mathcal{D}x$ is the formal "path integral measure".

This is a good time to introduce the "action" \mathcal{L} :

$$\mathcal{L}(x) := \int_0^T dt \left(\frac{1}{2} \dot{x}^2(t) - V(x(t)) \right).$$

With this notation,

$$\psi(T,x) = c \int dx_0 \psi_0(x_0) \int_{W_{x_0 x_n}} \mathcal{D}x e^{i\mathcal{L}(x)}.$$

Let x_c denote the path on which $\mathcal{L}(x)$ attains its minimum value, write $x = x_c + x_q$ with $x_q \in W_{00}$, and get

$$\psi(T,x) = c \int dx_0 \psi_0(x_0) \int_{W_{00}} \mathcal{D}x_q e^{i\mathcal{L}(x_c + x_q)}.$$

In our particular case \mathcal{L} is quadratic in x, and there- Proof. In fact, the left hand side of this equality is fore $\mathcal{L}(x_c + x_q) = \mathcal{L}(x_c) + \mathcal{L}(x_q)$ (this uses the fact that x_c is an extremal of \mathcal{L} , of course). Plugging this V = 0: into what we already have, we get

$$\psi(T,x) = c \int dx_0 \psi_0(x_0) \int_{W_{00}} \mathcal{D}x_q e^{i\mathcal{L}(x_c) + i\mathcal{L}(x_q)}$$
$$= c \int dx_0 \psi_0(x_0) e^{i\mathcal{L}(x_c)} \int_{W_{00}} \mathcal{D}x_q e^{i\mathcal{L}(x_q)}.$$

Now this is excellent news, because the remaining path integral over W_{00} does not depend on x_0 or x_n , and hence it is a constant! Allowing c to change its value from line to line, we get

$$\psi(T,x) = c \int dx_0 \psi_0(x_0) e^{i\mathcal{L}(x_c)}.$$

Lemma 3.4 now shows us that $x_c(t) = x_0 \cos t +$ $x_n \sin t$. An easy explicit computation gives $\mathcal{L}(x_c) =$ $-x_0x_n$, and we arrive at our final result,

$$\psi(\frac{\pi}{2}, x) = c \int dx_0 \psi_0(x_0) e^{-ix_0 x_n}.$$

Notice that this is precisely the formula for the Fourier transform of ψ_0 ! That is, the answer to the question in the title of this document is "the particle gets Fourier transformed", whatever that may mean.

3. The Lemmas

Lemma 3.1. For any two matrices A and B,

$$e^{A+B} = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^n.$$

Proof. (sketch) Using Taylor expansions, we see that $e^{\frac{A+B}{n}}$ and $e^{A/n}e^{B/n}$ differ by terms at most proportional to c/n^2 . Raising to the nth power, the two sides differ by at most O(1/n), and thus

$$e^{A+B} = \lim_{n \to \infty} \left(e^{\frac{A+B}{n}} \right)^n = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^n,$$

as required.

Lemma 3.2.

$$\left(e^{itV}\psi_0\right)(x) = e^{itV(x)}\psi_0(x).$$

Lemma 3.3.

$$\left(e^{i\frac{t}{2}\Delta}\psi_0\right)(x) = c\int dx' e^{i\frac{(x-x')^2}{2t}}\psi_0(x').$$

just a solution $\psi(t,x)$ of Schrödinger's equation with

$$\frac{\partial \psi}{\partial t} = \frac{i}{2} \Delta_x \psi, \qquad \psi|_{t=0} = \psi_0.$$

Taking the Fourier transform $\tilde{\psi}(t,p)$ $\frac{1}{\sqrt{2\pi}}\int e^{-ipx}\psi(t,x)dx$, we get the equation

$$\frac{\partial \tilde{\psi}}{\partial t} = -i \frac{p^2}{2} \tilde{\psi}, \qquad \tilde{\psi}|_{t=0} = \tilde{\psi}_0.$$

For a fixed p, this is a simple first order linear differential equation with respect to t, and thus,

$$\tilde{\psi}(t,p) = e^{-i\frac{tp^2}{2}}\tilde{\psi}_0(p).$$

Taking the inverse Fourier transform, which takes products to convolutions and Gaussians to other Gaussians, we get what we wanted to prove.

Lemma 3.4. With the notation of Section 2 and at the specific case of $V(x) = \frac{1}{2}x^2$ and $T = \frac{\pi}{2}$, we have

$$x_c(t) = x_0 \cos t + x_n \sin t.$$

Proof. If x_c is a critical point of \mathcal{L} on $W_{x_0x_n}$, then for any $x_q \in W_{00}$ there should be no term in $\mathcal{L}(x_c + \epsilon x_q)$ which is linear in ϵ . Now recall that

$$\mathcal{L}(x) = \int_0^T dt \left(\frac{1}{2} \dot{x}^2(t) - V(x(t)) \right),$$

so using $V(x_c + \epsilon x_q) \sim V(x_c) + \epsilon x_q V'(x_c)$ we find that the linear term in ϵ in $\mathcal{L}(x_c + \epsilon x_q)$ is

$$\int_0^T dt \left(\dot{x}_c \dot{x}_q - V'(x_c) x_q \right).$$

Integrating by parts and using $x_q(0) = x_q(T) = 0$, this becomes

$$\int_0^T dt \left(-\ddot{x}_c - V'(x_c) \right) x_q.$$

For this integral to vanish independently of x_q , we must have $-\ddot{x}_c - V'(x_c) \equiv 0$, or

This is the famous
$$F = ma$$
 of Newton's, and we have just rediscovered the principle of least action!

In our particular case this boils down to the equation $\ddot{x}_c = -x_c$, $x_c(0) = x_0$, $x_c(\pi/2) = x_n$, whose unique solution is displayed in the statement of this lamps.

$$\ddot{x}_c = -x_c, \qquad x_c(0) = x_0, \qquad x_c(\pi/2) = x_n,$$