Abstract. To break a week of deep thinking with a nice colourful light dessert, we will present the Kolmogorov-Arnold solution of Hilbert's 13th problem with lots of computer-generated rainbowpainted 3D pictures.
In short, Hilbert asked if a certain specific function of three variables can be written as a multiple (yet finite) composition of continuous functions of just two variables. Kolmogorov and Arnold showed him silly (ok, it took about 60 years, so it was a bit tricky) by showing that any continuous function f of any finite number of variables is a finite composition of continuous functions of a single variable and several instances of the binary function " + " (addition). For $f(x, y)=x y$, this may be $x y=\exp (\log x+\log y)$. For Fix an irrational $\lambda>0$, say $\lambda=(\sqrt{5}-1) / 2$. All $f(x, y, z)=x^{y} / z$, this may be $\exp (\exp (\log y+\log \log x)+(-\log z))$. functions are continuous.
What might it be for (say) the real part of the Riemann zeta function?
The only original material in this talk will be the pictures; the math was known since around 1957.

Hilbert

Kolmogorov

Arnold (by Moser)

$\frac{1}{3} \operatorname{Re}(\zeta(x+i y))$ on $[0,1] \times[13,17]$

Theorem. There exist five $\phi_{i}:[0,1] \rightarrow[0,1](1 \leq$ $i \leq 5)$ so that for every $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ there exists a $g:[0,1+\lambda] \rightarrow \mathbb{R}$ so that

$$
f(x, y)=\sum_{i=1}^{5} g\left(\phi_{i}(x)+\lambda \phi_{i}(y)\right)
$$

for every $x, y \in[0,1]$.

Step 1. If $\epsilon>0$ and $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$, then there exists $\phi:[0,1] \rightarrow[0,1]$ and $g:[0,1+\lambda] \rightarrow \mathbb{R}$ so that $|f(x, y)-g(\phi(x)+\lambda \phi(y))|<\epsilon$ on at least 98% of the area of $[0,1] \times[0,1]$.
The key. "Poorify" chocolate bars.
 gil 1 sator $:=\frac{\text { at }}{\text { an }}$

Dessert: Hilbert's 13th Problem, in Full Colour (Page 2)

Step 2. There exists $\phi:[0,1] \rightarrow[0,1]$ so that for every $\epsilon>0$ and every $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ there exists a $g:[0,1+\lambda] \rightarrow \mathbb{R}$ so that $|f(x, y)-g(\phi(x)+\lambda \phi(y))|<\epsilon$ on a set of area at least $1-\epsilon$ in $[0,1] \times[0,1]$.

g_{1}-coloured $\phi(x)+\lambda \phi(y)$

Step 3. There exist $\phi_{i}:[0,1] \rightarrow[0,1](1 \leq i \leq 5)$ so that for every $\epsilon>0$ and every $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ there exists a $g:[0,1+\lambda] \rightarrow \mathbb{R}$ so that

$$
\left|f(x, y)-\sum_{i=1}^{5} g\left(\phi_{i}(x)+\lambda \phi_{i}(y)\right)\right|<\left(\frac{2}{3}+\epsilon\right)\|f\|_{\infty}
$$

for every $x, y \in[0,1]$.
The key. "Shift the chocolates"...

Step 4. We are done.
The key. Learn from the artillery!
Set $T g:=\sum_{i=1}^{5} g\left(\phi_{i}(x)+\lambda \phi_{i}(y)\right), f_{1}:=f, M:=\|f\|$, and iterate "shooting and adjusting". Find g_{1} with $\left\|g_{1}\right\| \leq M$ and $\left\|f_{2}:=f_{1}-T g_{1}\right\| \leq \frac{3}{4} M$. Find g_{2} with $\left\|g_{2}\right\| \leq \frac{3}{4} M$ and $\left\|f_{3}:=f_{2}-T g_{2}\right\| \leq\left(\frac{3}{4}\right)^{2} M$. Find g_{3} with $\left\|g_{3}\right\| \leq\left(\frac{3}{4}\right)^{2} M$ and $\left\|f_{4}:=f_{3}-T g_{3}\right\| \leq\left(\frac{3}{4}\right)^{3} M$. Continue to eternity. When done, set $g=\sum g_{k}$ and note that $f=T g$ as required.
Exercise 1. Do the m-dimensional case.
Exercise 2. Do \mathbb{R}^{m} instead of just I^{m}.

Propaganda. I love handouts! • I have nothing to hide and you can take what you want, forwards, backwards, here and at home. - What doesn't fit on one sheet can't be done in one hour. - It takes learning and many hours and a few pennies. The audience's worth it! • There's real math in the handout viewer!

