$$
\text { The } 17 \text { Worlds of Planar Ants }
$$

Books. got my first digital camera and set out to take pictures of my kids and of symmetric patterns in the plane ( $\omega /$ Tilings). There are exactly 17 of those, no more, no less. It is an addicting challenge to walk around


Lou Kauffman's Tie



- J. H. Conway, Burgiel, and C. Goodman-Strauss, The Symmetries of Things, CRC Press, 2008.
- J. M. Montesinos, Classical Tessellations and Three-Manifolds, Springer-Verlag, 1987. looking at buildings, brick walls, people's ties, fabrics, what's not, and to try figure out which of the 17 is each one.
- What would history look like if we were living on Venus?
- What do the ants on Lou Kauffman's tie think?


## The Renaissance Story



The Venus Story


The Lake Merrit Story


Claim. Exactly 10 "features" are possible. They are M, G, 2, 3, 4, 6, $\overline{2}, \overline{3}, \overline{4}$, and $\overline{6}$.


Theorem. There are exactly 17 "tilings" of the plane: $\emptyset=0, \mathrm{MM}=* *, \mathrm{MG}=* \circ, \mathrm{GG}=\circ \circ, 2222=$ $2222,333=333,442=442,632=632, \overline{2} \overline{2} \overline{2}=* 2222$, $\overline{3} \overline{3} \overline{3}=* 333, \overline{4} \overline{4} \overline{2}=* 442, \overline{6} \overline{3} \overline{2}=* 632,4 \overline{2}=4 * 2,3 \overline{3}=$ $3 * 3,2 \overline{2} \overline{2}=2 * 22,22 \mathrm{M}=22 *, 22 \mathrm{G}=22$ 。. 18 ??


The 230 Worlds of Spacial Monkeys (The 219 worlds of Monkeys that Can't Tell their Left from their Right) $\omega /$ Crys, $\omega /$ CFHT

## Brian Sanderson's Pattern Recognition Algorithm

Is the maximum rotation order $1,2,3,4$ or 6 ? Is there a mirror $(\mathrm{m})$ ? Is there an indecomposable glide reflection $(\mathrm{g})$ ? Is there a rotation axis on a mirror? Is there a rotation axis not on a mirror?


Note: Every pattern is identified according to three systems of notation, as in the example below:


442: The Conway-Thurston notation, as used in my tilings page.
p4: The International Union of Crystallography notation.
S442: The Montesinos notation, as in his book Classical Tesselations and Three Manifolds

Dror Bar-Natan's tilings worksheet: Classify the following pictures according to the following possibilities: $2222,333,442$, $632,{ }^{*} 2222,{ }^{*} 333,{ }^{*} 442,{ }^{*} 632,4^{*} 2,3^{*} 3,2^{*} 22,22^{*}, *^{*},{ }^{*}$, oo, 22 o, and 0 (the pictures come in $\{$ context, pattern\} pairs).




This worksheet: http://drorbn.net/AcademicPensieve/2014-08/17Worlds/WorkSheet.pdf Solutions and more: http://www.math.toronto.edu/~drorbn/Gallery/Symmetry/Tilings/ Talk: http://www.math.toronto.edu/~drorbn/Talks/ClassroomAdventures-1408/

