A NOTE ON THE UNITARITY PROPERTY OF THE GASSNER INVARIANT

Abstract. We give a 3-page description of the Gassier invariant / representation of braids / pure braids, along with a description of its unitarity property.
The unitarity of the Gasser representation [Ga] of the pure braid group was discussed by many authors (e.g. [Lo, Ab, KLW]) and from several points of view, yet without exposing how utterly simple the formulas turn out to be ${ }^{1}$. When the present author needed quick and easy formulas, he couldn't find them. This note is written in order to rectify this situation. I was heavily influenced by a similar discussion of the unitarity of the Burau representation in [KT, Section 3.1.2].

Let n be a natural number. The braid group B_{n} on n strands is the group with $b_{0}=\sigma_{1} \sigma_{3}^{-1} \sigma_{2}$: generators σ_{i}, for $1 \leq i \leq n$-1 and with relations $\mathbb{R}_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ when $|i-j|>1$ and $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$ when $1 \leq i \leq n-2$. THe standard way to depict braids, namely elements of B_{n}, appears on the right. Braids are made of strands that are indexed 1 through n at the bottom. The generator σ_{i} denotes a positive crossing
 between the strand at position $\# i$ as counted just below the horizontal level of that crossing, and the strand just to its right. Note that with the strands indexed at the bottom, the two strands participating in a crossing corresponding to σ_{i} may have arbitrary indices, depending on the permutation induced by the braids below the level of that crossing.

Let t be a formal variable and let $U_{i}(t)=U_{n, i}(t)$ denote the $n \times n$ identity matrix with its 2×2 block at rows i and $i+1$ and columns i and $i+1$ replaced by $\left(\begin{array}{cc}1-t & 1 \\ t & 0\end{array}\right)$. Let $U_{i}^{-1}(t)$ be the inverse of $U_{i}(t)$; it is the $n \times n$ identity matrix with the block at $\{i, i+1\} \times\{i, i+1\}$
 replaced by $\left(\begin{array}{cc}0 & \bar{t} \\ 1 & 1-\bar{t}\end{array}\right)$, where \bar{t} denotes t^{-1}.

Given a braid $b=\prod_{\alpha=1}^{k} \sigma_{i_{\alpha}}^{s_{\alpha}}$, where the s_{α} are signs and where products are taken from left to right. Let j_{α} be the index of the "over" strand at crossing $\# \alpha$ in b. The Gasser invariant $\Gamma(b)$ of b is given by the formula on

$$
\begin{aligned}
& \text { The right } \\
& \Gamma(b):=\prod_{\alpha=1}^{k} U_{i_{\alpha}}^{s_{\alpha}}\left(t_{j_{\alpha}}\right) .
\end{aligned}
$$

It is a Laurent polynomial in n formal variables t_{1}, \ldots, t_{n}, with coefficients in \mathbb{Z}.

[^0]For example, $\Gamma\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)=U_{1}\left(t_{1}\right) U_{2}\left(t_{1}\right) U_{1}\left(t_{2}\right)$ while $\Gamma\left(\sigma_{2} \sigma_{1} \sigma_{2}\right)=$ $U_{2}\left(t_{2}\right) U_{1}\left(t_{1}\right) U_{2}\left(t_{1}\right)$. The equality of these two matrix products constitutes the bulk of the proof of the well-definedness of Γ, and the rest is even easier. The verification of this equality is a routine exervise. Impatient readers may find it in the (Mathematical, notebook that
 accompanies this note, $[\mathrm{BN}]$.
ult phicationsecond example is the braid b_{0} of the first figure. Here and in [BN],

$$
\Gamma\left(b_{0}\right)=U_{1}\left(t_{1}\right) U_{3}^{-1}\left(t_{4}\right) U_{2}\left(t_{1}\right)=\left(\begin{array}{cccc}
1-t_{1} & 1-t_{1} & 1 & 0 \\
t_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & \bar{t}_{4} \\
0 & t_{1} & 0 & 1-\bar{t}_{4}
\end{array}\right)
$$

Given a permutation $\tau=[\tau 1, \ldots, \tau n]$ of $1, \ldots, n$, let Ω_{τ} be the triangular $n \times n$ matrix shown on the right $\left(\frac{1}{1-t_{t i}}\right.$ on the diagonal, 1 's below the diagonal, 0 's above). Let ι denote the identity permutation $[1,2, \ldots, n]$.
Theorem. Let b be a braid that induces a strand permutation $\tau=$

$$
\Omega_{\tau}:=\left(\begin{array}{cccc}
\frac{1}{1-t_{\tau 1}} & 0 & \cdots & 0 \\
1 & \frac{1}{1-t_{\tau 2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & \frac{1}{1-t_{\tau n}}
\end{array}\right)
$$ $[\tau 1, \ldots, \tau n]$ (meaning, the strand indices that appear at the top of b are $\tau 1, \tau 2, \ldots, \tau n$). Let $\gamma=\Gamma(b)$ be the Gassner invariant of b. Then γ satisfies the "unitarity property"

$$
\begin{equation*}
\Omega_{\tau} \gamma^{-1}=\bar{\gamma}^{T} \Omega_{\iota}, \quad \text { or equivalently, } \quad \gamma^{-1}=\Omega_{\tau}^{-1} \bar{\gamma}^{T} \Omega_{\iota} \tag{1}
\end{equation*}
$$

where $\bar{\gamma}$ is γ subject to the substitution $\forall i t_{i} \rightarrow \bar{t}_{i}:=\gamma_{i}^{-1}$, and $\bar{\gamma}^{T}$ is the transpose matrix of $\bar{\gamma}$.
Proof. A direct and simple-minded computation or $b=\sigma_{i}$ and for $b=\sigma_{i}^{-1}$, namely for $\gamma=U_{i}\left(t_{i}\right)$ and for $\gamma=U_{i}^{-1}\left(t_{i+1}\right)$ (impatient readers see [BN]), and then, clearly, using the second form of
 Equation (1), the statement generalizes to products with all the intermediate $\Omega_{\tau}^{-1} \Omega_{\tau}$ pairs cancelling out nicely.

If the Gasser invariant Γ is restricted to pure braids, namely to braids that induces the identity permutation, it becomes multiplicative and then it can be called "the Gasser representation" (in general Γ can be recast as a homomorphism into $M_{n \times n}\left(\mathbb{Z}\left[t_{i}, \bar{t}_{i}\right]\right) \rtimes S_{n}$, where S_{n} acts on matrices by permuting the variables t_{i} appearing in their entries).

For pure braids $\Omega_{\tau}=\Omega_{\iota}$ and hence by conjugating (in the $t_{i} \rightarrow 1 / t_{i}$ sense) and transposing Equation (1) and replacing γ by γ^{-1}, we find that the theorem also holds if Ω is replaced with $\bar{\Omega}^{T}$, and hence also with $\Omega+\bar{\Omega}^{T}$, which is formally Hermitian. Extanding the coefficients to \dot{C}, wa find

If the t_{i} 's are specialized to complex numbers of unit norm then inversion is the same as complex that the conjugation. If also the t_{i} 's are sufficiently close to 1 , then \sim 止 n is dominated by its main diagonal which is real and large, and hence is positively definite and genuinely Hermitian. Thus in that case, the Gainer representation is unitary in the standard sense of the word, relative to the inner product on/ \mathbb{C}^{2} defined by s.
[Ab] M. N. Abdulrahim, A Faithfulness Criterion for the Gassner Representation of the Pure Braid Group, Proceedings of the American Mathematical Society 125-5 (1997) 1249-1257.
[BN] D. Bar-Natan, UnitarityOfGassnerDemo.nb, a Mathematica noteboook at http://drorbn.net/ AcademicPensieve/2014-06/UnitarityOfGassner/.
[Ga] B. J. Gassner, On Braid Groups, Ph.D. thesis, New York Univeristy, 1959.
[KT] C. Kassel and V. Turaev, Braid Groups, Springer GTM 247, 2008.

$$
i(i y)-i \overline{i y)}=-y-y=-2 y
$$

[KLW] P. Kirk, C. Livingston, and Z. Wang, The Gassier Representation for String Links, Communications in Contemporary Mathematics 3-1 (2001) 87-136, arXiv:math/9806035.
[Lo] D. D. Long, On the Linear Representation of Braid Groups, Transactions of the American Mathematical Society 311-2 (1989) 535-560.

Department of Mathematics, University of Toronto, Toronto Ontario M5S 2E4, Canada
E-mail address: drorbn@math. toronto.edu
URL: http://www.math.toronto.edu/~drorbn

$$
\begin{aligned}
\operatorname{Re}\left(\frac{1}{1-t}\right) & =\frac{R_{2}(1-F)}{\|1-t\|^{2}} \\
& =\frac{1-\cos \alpha}{(\cos \alpha-1)^{2}+\sin ^{2} \alpha} \\
& =\frac{1-\cos \alpha}{2-2 \cos \alpha}=\frac{1}{2}
\end{aligned}
$$

A. Our Closing cark is that the banssuer representation

property of this note, and tad be vary surprisal if it is untiring

Pensieve header: Mathemaica notebook accompanying "A Note on the Unitarity Property of the Gassner Invariant" by Dror Bar-Natan, http://drorbn.net/AcademicPensieve/2014-06/UnitarityOfGassne $1 .$.

Definitions.

$$
\begin{aligned}
& \mathrm{U}_{i_{-}}\left[t_{-}\right] \text {:= ReplacePart[} \\
& \text { IdentityMatrix[n], } \\
& \{\{i, i\} \rightarrow 1-t, \quad\{i, i+1\} \rightarrow 1 \text {, } \\
& \{i+1, i\} \rightarrow t,\{i+1, i+1\} \rightarrow 0\} \\
& \text { Which[i<j, 0, i=j, } \left.\frac{1}{1-t_{\tau \llbracket i \rrbracket}}, i>j, 1\right],
\end{aligned}
$$

\{i, n\}, $\{\mathrm{j}, \mathrm{n}\}]$;
$\overline{x_{-}}:=x / . t_{i_{-}}: \rightarrow 1 / t_{i} ;$

$\left\{\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1-t & 1 & 0 & 0 \\ 0 & t & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{t} & 0 & 0 \\ 0 & 1 & \frac{-1+t}{t} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)\right\}$
n = 3; MatrixForm /@ Simplify /@ $\left\{\Omega_{\{2,3,1\}}\right.$, Inverse $\left.\left[\Omega_{\{2,3,1\}}\right]\right\}$
$\left\{\left(\begin{array}{ccc}\frac{1}{1-t_{2}} & 0 & 0 \\ 1 & \frac{1}{1-t_{3}} & 0 \\ 1 & 1 & \frac{1}{1-t_{1}}\end{array}\right),\left(\begin{array}{ccc}1-t_{2} & 0 & 0 \\ -\left(-1+t_{2}\right) & \left(-1+t_{3}\right) & 1-t_{3}\end{array}\right.\right.$

n = 3; MatrixForm /@Simplify /@ $\left\{\mathrm{U}_{1}\left[\mathrm{t}_{1}\right] \cdot \mathrm{U}_{2}\left[\mathrm{t}_{1}\right] \cdot \mathrm{U}_{1}\left[\mathrm{t}_{2}\right]\right.$, $\left.\mathrm{U}_{2}\left[\mathrm{t}_{2}\right] \cdot \mathrm{U}_{1}\left[\mathrm{t}_{1}\right] \cdot \mathrm{U}_{2}\left[\mathrm{t}_{1}\right]\right\}$
$\left\{\left(\begin{array}{ccc}1-t_{1} & 1-t_{1} & 1 \\ -t_{1}\left(-1+t_{2}\right) & t_{1} & 0 \\ t_{1} t_{2} & 0 & 0\end{array}\right),\left(\begin{array}{ccc}1-t_{1} & 1-t_{1} & 1 \\ -t_{1}\left(-1+t_{2}\right) & t_{1} & 0 \\ t_{1} t_{2} & 0 & 0\end{array}\right)\right\}$

The unitarity property for the generators.

$$
\mathrm{n}=5 ; \gamma=\mathrm{U}_{3}\left[\mathrm{t}_{3}\right] ;
$$

MatrixForm /@ Simplify /@ \{ $\Omega_{\{1,2,4,3,5\}}$. Inverse[γ], Transpose $\left.[\bar{\gamma}] . \Omega_{\{1,2,3,4,5\}}\right\}$

$$
\left\{\left(\begin{array}{ccccc}
\frac{1}{1-t_{1}} & 0 & 0 & 0 & 0 \\
1 & \frac{1}{1-t_{2}} & 0 & 0 & 0 \\
1 & 1 & 0 & \frac{1}{t_{3}-t_{3} t_{4}} & 0 \\
1 & 1 & \frac{1}{1-t_{3}} & 0 & 0 \\
1 & 1 & 1 & 1 & \frac{1}{1-t_{5}}
\end{array}\right),\left(\begin{array}{ccccc}
\frac{1}{1-t_{1}} & 0 & 0 & 0 & 0 \\
1 & \frac{1}{1-t_{2}} & 0 & 0 & 0 \\
1 & 1 & 0 & \frac{1}{t_{3}-t_{3} t_{4}} & 0 \\
1 & 1 & \frac{1}{1-t_{3}} & 0 & 0 \\
1 & 1 & 1 & 1 & \frac{1}{1-t_{5}}
\end{array}\right)\right\}
$$

$\mathrm{n}=5 ; \gamma=\mathrm{Uinv}_{3}\left[\mathrm{t}_{4}\right]$;
MatrixForm /@ FullSimplify /@ $\left\{\Omega_{\{1,2,4,3,5\}}\right.$. Inverse $[\gamma]$, Transpose $\left.[\bar{\gamma}] . \Omega_{\{1,2,3,4,5\}}\right\}$

$$
\left\{\left(\begin{array}{ccccc}
\frac{1}{1-t_{1}} & 0 & 0 & 0 & 0 \\
1 & \frac{1}{1-t_{2}} & 0 & 0 & 0 \\
1 & 1 & 1 & \frac{1}{1-t_{4}} & 0 \\
1 & 1 & 1-\frac{t_{3} t_{4}}{-1+t_{3}} & 1 & 0 \\
1 & 1 & 1 & 1 & \frac{1}{1-t_{5}}
\end{array}\right),\left(\begin{array}{ccccc}
\frac{1}{1-t_{1}} & 0 & 0 & 0 & 0 \\
1 & \frac{1}{1-t_{2}} & 0 & 0 & 0 \\
1 & 1 & 1 & \frac{1}{1-t_{4}} & 0 \\
1 & 1 & 1-\frac{t_{3} t_{4}}{-1+t_{3}} & 1 & 0 \\
1 & 1 & 1 & 1 & \frac{1}{1-t_{5}}
\end{array}\right)\right\}
$$

$$
b_{0}=\sigma_{1} \sigma_{3}^{-1} \sigma_{2}
$$

The braid

$\mathrm{n}=4$; MatrixForm $\left[\gamma_{0}=\mathrm{U}_{1}\left[\mathrm{t}_{1}\right] . \mathrm{Uinv}_{3}\left[\mathrm{t}_{4}\right] \cdot \mathrm{U}_{2}\left[\mathrm{t}_{1}\right]\right]$

$$
\left(\begin{array}{cccc}
1-t_{1} & 1-t_{1} & 1 & 0 \\
t_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{t_{4}} \\
0 & t_{1} & 0 & -\frac{1-t_{4}}{t_{4}}
\end{array}\right)
$$

The unitarity property for b_{0}.

$$
\begin{aligned}
& \text { MatrixForm /@ Simplify } / @\left\{\Omega_{\{2,4,1,3\}} \text {. Inverse }\left[\gamma_{0}\right], \text { Transpose }\left[\overline{\gamma_{0}}\right] . \Omega_{\{1,2,3,4\}}\right\} \\
& \left\{\begin{array}{cccc}
0 & \frac{1}{t_{1}-t_{1} t_{2}} & 0 & 0 \\
0 & \frac{1}{t_{1}} & \frac{1}{t_{1}} & \frac{1}{t_{1}-t_{1} t_{4}} \\
\frac{1}{1-t_{1}} & 0 & 0 & 0 \\
1 & 1 & -\frac{1+t_{3}\left(-1+t_{4}\right)}{-1+t_{3}} & 1
\end{array}\right),\left(\begin{array}{ccc}
0 & \frac{1}{t_{1}-t_{1} t_{2}} & 0 \\
0 & \frac{1}{t_{1}} & \frac{1}{t_{1}} \\
\frac{1}{t_{1}-t_{1} t_{4}} \\
1-t_{1} & 0 & 0 \\
1 & 1 & -\frac{1+t_{3}\left(-1+t_{4}\right)}{-1+t_{3}}
\end{array}\right) 1
\end{aligned}
$$

[^0]: Date: June 28, 2014; first edition: not yet.
 2010 Mathematics Subject Classification. 57M25.
 Key words and phrases. Braids, Unitarity, Gassner, Burau.
 This work was partially supported by NSERC grant RGPIN 262178. The full $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ sources are at http://drorbn. net/AcademicPensieve/2014/UnitarityOfGassner/. This is arXiv:????.????.
 ${ }^{1}$ Partially this is because the formulas are simplest when extended a "Gasser invariant" defined on the full braid group, but then it is not a representation and it is not unitary. Yet it has an easy "unitarity property"; see below.

