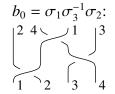
A NOTE ON THE UNITARITY PROPERTY OF THE GASSNER INVARIANT

DROR BAR-NATAN

ABSTRACT. We give a 3-page description of the Gassner invariant (or representation) of braids (or pure braids), along with a description and a proof of its unitarity property.

The unitarity of the Gassner representation [Ga] of the pure braid group was discussed by many authors (e.g. [Lo, Ab, KLW]) and from several points of view, yet without exposing how utterly simple the formulas turn out to be¹. When the present author needed quick and easy formulas, he couldn't find them. This note is written in order to rectify this situation (but with no discussion of theory). I was heavily influenced by a similar discussion of the unitarity of the Burau representation in [KT, Section 3.1.2].

Let *n* be a natural number. The braid group B_n on *n* strands is the group with $b_0 = \sigma_1 \sigma_3^{-1} \sigma_2$: generators σ_i , for $1 \le i \le n-1$, and with relations $\sigma_i \sigma_j = \sigma_j \sigma_i$ when |i-j| > 1 and $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ when $1 \le i \le n-2$. A standard way to depict braids, namely elements of B_n , appears on the right. Braids are made of strands that are indexed 1 through n at the bottom. The generator σ_i denotes a positive crossing indexed 1 through n at the bottom. The generator σ_i denotes a positive crossing



between the strand at position #i as counted just below the horizontal level of that crossing, and the strand just to its right. Note that with the strands indexed at the bottom, the two strands participating in a crossing corresponding to σ_i may have arbitrary indices, depending on the permutation induced by the braids below the level of that crossing.

Let t be a formal variable and let $U_i(t) = U_{n;i}(t)$ denote the $n \times n$ identity matrix with its 2×2 block at rows i and i+1 and columns i and i+1 replaced by $\begin{pmatrix} 1-t & 1 \\ t & 0 \end{pmatrix}$. Let $U_i^{-1}(t)$ be the inverse of $U_i(t)$; it is the $n \times n$ identity matrix with the block at $\{i, i+1\} \times \{i, i+1\}$ $U_{5;3}(t) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1-t & 1 & 0 \\ 0 & 0 & t & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ replaced by $\begin{pmatrix} 0 & \bar{t} \\ 1 & 1-\bar{t} \end{pmatrix}$, where \bar{t} denotes t^{-1} .

Let b be a braid $b = \prod_{\alpha=1}^k \sigma_{i_\alpha}^{s_\alpha}$, where the s_α are signs and where products are taken from left to right. Let j_α be the index of the "over" strand at crossing $\#\alpha$ in b. The Gassner invariant $\Gamma(b)$ of b is given by the formula on the right. It is a Laurent polynomial in *n* formal variables t_1, \ldots, t_n , with coefficients in \mathbb{Z} .

Date: July 13, 2014; first edition: June 29, 2014.

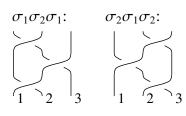
²⁰¹⁰ Mathematics Subject Classification. 57M25.

Key words and phrases. Braids, Unitarity, Gassner, Burau.

This work was partially supported by NSERC grant RGPIN 262178. The full TeX sources are at http://drorbn. net/AcademicPensieve/2014/UnitarityOfGassner/. Updated less often: arXiv:1406.7632.

¹Partially this is because the formulas are simplest when extended a "Gassner invariant" defined on the full braid group, but then it is not a representation and it is not unitary. Yet it has an easy "unitarity property"; see below.

For example, $\Gamma(\sigma_1\sigma_2\sigma_1) = U_1(t_1)U_2(t_1)U_1(t_2)$ while $\Gamma(\sigma_2\sigma_1\sigma_2) = U_2(t_2)U_1(t_1)U_2(t_1)$. The equality of these two matrix products constitutes the bulk of the proof of the well-definedness of Γ , and the rest is even easier. The verification of this equality is a routine exercise in 3×3 matrix multiplication. Impatient readers may find it in the *Mathematica* notebook that accompanies this note, [BN].



A second example is the braid b_0 of the first figure. Here and in [BN],

$$\Gamma(b_0) = U_1(t_1)U_3^{-1}(t_4)U_2(t_1) = \begin{pmatrix} 1 - t_1 & 1 - t_1 & 1 & 0 \\ t_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \bar{t_4} \\ 0 & t_1 & 0 & 1 - \bar{t_4} \end{pmatrix}$$

Given a permutation $\tau = [\tau 1, ..., \tau n]$ of 1, ..., n, let $\Omega(\tau)$ be the triangular $n \times n$ matrix shown on the right (diagonal entries $(1 - t_{\tau i})^{-1}$, 1's below the diagonal, 0's above). Let ι denote the identity permutation [1, 2, ..., n].

$$\Omega(\tau) := \begin{pmatrix} (1 - t_{\tau 1})^{-1} & 0 & \cdots & 0 \\ 1 & (1 - t_{\tau 2})^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & (1 - t_{\tau n})^{-1} \end{pmatrix}$$

Theorem. Let b be a braid that induces a strand permutation $\tau = [\tau 1, ..., \tau n]$ (meaning, the strand indices that appear at the top of b are $\tau 1, \tau 2, ..., \tau n$). Let $\gamma = \Gamma(b)$ be the Gassner invariant of b. Then γ satisfies the "unitarity property"

(1)
$$\Omega(\tau)\gamma^{-1} = \bar{\gamma}^T \Omega(\iota)$$
, or equivalently, $\gamma^{-1} = \Omega(\tau)^{-1} \bar{\gamma}^T \Omega(\iota)$,

where $\bar{\gamma}$ is γ subject to the substitution $\forall i \, t_i \to \bar{t_i} \coloneqq t_i^{-1}$, and $\bar{\gamma}^T$ is the transpose matrix of $\bar{\gamma}$. *Proof.* A direct and simple-minded computation proves Equation (1) for $b = \sigma_i$ and for $b = \sigma_i^{-1}$, namely for $\gamma = U_i(t_i)$ and for $\gamma = U_i^{-1}(t_{i+1})$ (impatient readers see [BN]), and then, clearly, using the second form of Equation (1), the statement generalizes to products with all the intermediate $\Omega(\tau)^{-1}\Omega(\tau)$ pairs cancelling out nicely.

If the Gassner invariant Γ is restricted to pure braids, namely to braids that induce the identity permutation, it becomes multiplicative and then it can be called "the Gassner representation" (in general Γ can be recast as a homomorphism into $M_{n\times n}(\mathbb{Z}[t_i, \bar{t}_i]) \times S_n$, where S_n acts on matrices by permuting the variables t_i appearing in their entries).

For pure braids $\Omega(\tau) = \Omega(\iota) =: \Omega$ and hence by conjugating (in the $t_i \to 1/t_i$ sense) and transposing Equation (1) and replacing γ by γ^{-1} , we find that the theorem also holds if Ω is replaced with $\bar{\Omega}^T$, and hence also with $\Omega + \bar{\Omega}^T$, which is formally Hermitian. Extending the coefficients to \mathbb{C} , we find that the same is true for $\Psi := i\Omega - i\bar{\Omega}^T$.

If the t_i 's are specialized to complex numbers of unit norm then inversion is the same as complex conjugation. If also the t_i 's are sufficiently close to 1 and have positive imaginary parts, then Ψ is dominated by its main diagonal entries, which are real, positive, and large, and hence Ψ is positive definite and genuinely Hermitian. Thus in that case, the Gassner representation is unitary in the standard sense of the word, relative to the inner product on \mathbb{C}^n defined by Ψ .

Our closing remark is that the Gassner representation easily extends to a representation of pure v/w-braids. See e.g. [BND, Sections 2.1.2 and 2.2], where the generators σ_{ij} are described (they are *not* generators of the ordinary pure braid group). Simply set $\Gamma(\sigma_{ij})^{\pm 1} = U_{ij}^{\pm 1}(t_i)$ where $U_{ij}(t)$ is the $n \times n$ identity matrix with its 2×2 block at rows i and j and columns i and j replaced by

 $\begin{pmatrix} 1 & 1-t \\ 0 & t \end{pmatrix}$. Yet on v/w-braids Γ does not satisfy the unitarity property of this note and I'd be very surprised if it is at all unitary.

REFERENCES

- [Ab] M. N. Abdulrahim, A Faithfulness Criterion for the Gassner Representation of the Pure Braid Group, Proceedings of the American Mathematical Society **125-5** (1997) 1249–1257.
- [BN] D. Bar-Natan, UnitarityOfGassnerDemo.nb, a *Mathematica* noteboook at http://drorbn.net/ AcademicPensieve/2014-06/UnitarityOfGassner/.
- [BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of w-Knotted Objects I: w-Knots and the Alexander Polynomial, http://drorbn.net/AcademicPensieve/Projects/WK01/ and arXiv:1405.1956.
- [Ga] B. J. Gassner, On Braid Groups, Ph.D. thesis, New York University, 1959.
- [KT] C. Kassel and V. Turaev, *Braid Groups*, Springer GTM **247**, 2008.
- [KLW] P. Kirk, C. Livingston, and Z. Wang, *The Gassner Representation for String Links*, Communications in Contemporary Mathematics **3-1** (2001) 87–136, arXiv:math/9806035.
- [Lo] D. D. Long, *On the Linear Representation of Braid Groups*, Transactions of the American Mathematical Society **311-2** (1989) 535–560.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO ONTARIO M5S 2E4, CANADA

E-mail address: drorbn@math.toronto.edu
URL: http://www.math.toronto.edu/~drorbn

Pensieve header: Mathemaica notebook accompanying "A Note on the Unitarity Property of the Gassner Invariant" by Dror Bar-Natan, http://drorbn.net/AcademicPensieve/2014-06/UnitarityOf-Gassner/.

Definitions.

```
\begin{split} & \text{U}_{i_-}[t_-] := \text{ReplacePart}[ \\ & \text{IdentityMatrix}[n], \\ & \{\{i,i\} \to 1-t, \ \{i,i+1\} \to 1, \\ & \{i+1,i\} \to t, \ \{i+1,i+1\} \to 0\} \\ \end{bmatrix}]; \\ & \text{Uinv}_{i_-}[t_-] := \text{Inverse}[\text{U}_i[t]]; \\ & \Omega[\tau_-] := \text{Table}[ \\ & \text{Which}[i < j, \ 0, \ i = j, \ (1-t_{\{\tau\}[i]]})^{-1}, \ i > j, \ 1], \\ & \{i,n\}, \ \{j,n\}]; \\ & \overline{X_-} := X \ /. \ t_{i_-} \mapsto 1/t_i; \\ & \overline{U}_{i_-,j_-}[t_-] := \text{ReplacePart}[ \\ & \text{IdentityMatrix}[n], \\ & \{\{i,i\} \to 1, \ \{i,j\} \to 1-t, \\ & \{j,i\} \to 0, \ \{j,j\} \to t\} \\ \end{bmatrix}]; \end{split}
```

The named matrices.

n = 5; MatrixForm /@ Simplify /@ {U₃[t], Uinv₃[t]}

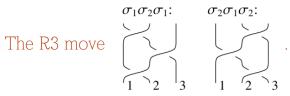
$$\left\{ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1-t & 1 & 0 \\ 0 & 0 & t & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{t} & 0 \\ 0 & 0 & 1 & \frac{-1+t}{t} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \right\}$$

n = 3; MatrixForm /@ Simplify /@ $\{\Omega[2, 3, 1], Inverse[\Omega[2, 3, 1]]\}$

$$\left\{ \left(\begin{array}{cccc} \frac{1}{1-t_2} & 0 & 0 \\ 1 & \frac{1}{1-t_3} & 0 \\ 1 & 1 & \frac{1}{1-t_1} \end{array} \right), \left(\begin{array}{ccccc} 1-t_2 & 0 & 0 \\ -\left(-1+t_2\right)\left(-1+t_3\right) & 1-t_3 & 0 \\ -\left(-1+t_1\right)\left(-1+t_2\right)t_3 & -\left(-1+t_1\right)\left(-1+t_3\right) & 1-t_1 \end{array} \right) \right\}$$

n = 5; MatrixForm[U_{4,1}[t]]

$$\left(\begin{array}{cccccc} t & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 - t & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right)$$



 $n = 3; \; \text{MatrixForm /@ Simplify /@ } \{ U_1[t_1].U_2[t_1].U_1[t_2], \; U_2[t_2].U_1[t_1].U_2[t_1] \}$

$$\left\{ \left(\begin{array}{cccc} 1-t_1 & 1-t_1 & 1 \\ -t_1 & (-1+t_2) & t_1 & 0 \\ t_1 & t_2 & 0 & 0 \end{array} \right), \ \left(\begin{array}{cccc} 1-t_1 & 1-t_1 & 1 \\ -t_1 & (-1+t_2) & t_1 & 0 \\ t_1 & t_2 & 0 & 0 \end{array} \right) \right\}$$

The unitarity property for the generators.

 $n = 5; \gamma = U_3[t_3];$

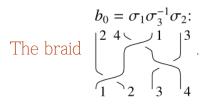
MatrixForm /@

Simplify $/ @ \{ \Omega[1, 2, 4, 3, 5] . Inverse[\gamma], Transpose[\overline{\gamma}] . \Omega[1, 2, 3, 4, 5] \}$

n = 5; $\gamma = Uinv_3[t_4]$;

MatrixForm /@

FullSimplify /@ $\{\Omega[1, 2, 4, 3, 5]$. Inverse $[\gamma]$, Transpose $[\overline{\gamma}]$. $\Omega[1, 2, 3, 4, 5]\}$



n = 4; MatrixForm[$\gamma_0 = U_1[t_1].Uinv_3[t_4].U_2[t_1]$]

$$\begin{pmatrix} 1-t_1 & 1-t_1 & 1 & 0 \\ t_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{t_4} \\ 0 & t_1 & 0 & -\frac{1-t_4}{t_4} \end{pmatrix}$$

The unitarity property for b_0 .

MatrixForm /@ Simplify /@ $\{\Omega[2,4,1,3].Inverse[\gamma_0], Transpose[\overline{\gamma_0}].\Omega[1,2,3,4]\}$

On to w-braids

 $n = 3; \; \texttt{MatrixForm} \; / @ \; \texttt{Simplify} \; / @ \; \{ \texttt{U}_{1,2}[\texttt{t}_1] . \texttt{U}_{1,3}[\texttt{t}_1] . \texttt{U}_{2,3}[\texttt{t}_2] \; , \; \texttt{U}_{2,3}[\texttt{t}_2] \; . \texttt{U}_{1,3}[\texttt{t}_1] \; . \texttt{U}_{1,2}[\texttt{t}_1] \}$

$$\left\{ \left(\begin{array}{cccc} 1 & 1-t_1 & 1-t_1 \\ 0 & t_1 & -t_1 & (-1+t_2) \\ 0 & 0 & t_1 & t_2 \end{array} \right), \, \left(\begin{array}{cccc} 1 & 1-t_1 & 1-t_1 \\ 0 & t_1 & -t_1 & (-1+t_2) \\ 0 & 0 & t_1 & t_2 \end{array} \right) \right\}$$

n = 3; MatrixForm /@ Simplify /@ $\{U_{1,2}[t_1].U_{1,3}[t_1], U_{1,3}[t_1].U_{1,2}[t_1]\}$

$$\left\{ \begin{pmatrix} 1 & 1-t_1 & 1-t_1 \\ 0 & t_1 & 0 \\ 0 & 0 & t_1 \end{pmatrix} \text{, } \begin{pmatrix} 1 & 1-t_1 & 1-t_1 \\ 0 & t_1 & 0 \\ 0 & 0 & t_1 \end{pmatrix} \right\}$$