Abstract. I will describe a semi-rigorous reduction of perturba- The BF Feynman Rules. For tive BF theory (Cattaneo-Rossi [CR]) to computable combina- an edge e, let Φ_{e} be its ditorics, in the case of ribbon 2-links. Also, I will explain how rection, in S^{3} or S^{1}. Let ω_{3} and why my approach may or may not work in the non-ribbon and ω_{1} be volume forms on case. Weak this result is, and at least partially already known S^{3} and S_{1}. Then for a 2-link

Cattaneo Rossi (Watanabe Wal). Yet in the ribbon case, the resulting invariant is $\left(f_{t}\right)_{t \in T}$,
a universal finite type invariant, a gadget that significantly generalizes and clarifies the Alexander polynomial and that is closely related to the Kashiwara-Vergne problem. I cannot rule out the possibility that the corresponding gadget in the non-ribbon case will be as interesting.
(good news in highlight)
s an invariant in $C W(F L(T)) \rightarrow C W(T)$, "cyclic words in T ".

$$
00
$$

BF Following $[\mathrm{CR}] . A \in \Omega^{1}\left(M=\mathbb{R}^{4}, \mathfrak{g}\right), B \in \Omega^{2}\left(M, \mathrm{~g}^{*}\right)$,

$$
S(A, B):=\int_{M}\left\langle B, F_{A}\right\rangle .
$$

With $f:\left(S=\mathbb{R}^{2}\right) \rightarrow M, \xi \in \Omega^{0}(S, \mathfrak{g}), \beta \in \Omega^{1}\left(S, \mathfrak{g}^{*}\right)$, set $O(A, B, f):=\int \mathcal{D} \xi \mathcal{D} \beta \exp \left(\frac{i}{\hbar} \int_{S}\left\langle\xi, d_{f^{*} A} \beta+f^{*} B\right\rangle\right)$

A BF Feynman Diagram.

(only double curves are allowed in ribbon 2-knots)

Theorem 1 (with Cattaneo (credit, no blame)). In the ribbon case,

Theorem 2. Using Gauss diagrams to represent knots and T component pure tangles, the above formulas define an invariant in $C W(F L(T)) \rightarrow C W(T)$, "cyclic words in T ".

- Agrees with BN-Dancso [BND] and with [BN2]. • In-practice computable! - Vanishes on braids. • Extends to w. - Contains Alexander. • The "missing factor" in Levine's factorization [Le] (the rest of $[\overline{L e}]$ also fits, hence contains the MVA). • Related to / extends Farber's $[\mathrm{Fa}]$? • Should be summed and categorified.

References.

[Ar] V. I. Arnold, Topological Invariants of Plane Curves and Caustics, University Lecture Series 5, American Mathematical Society 1994.
[BN1] D. Bar-Natan, Bracelets and the Goussarov filtration of the space of knots, Invariants of knots and 3-manifolds (Kyoto 2001), Geometry and Topology Monographs 4 1-12, arXiv:math.GT/0111267.
[BN2] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, http://www.math.toronto.edu/~drorbn/papers/KBH/ arXiv:1308.1721.
[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of WKnotted Objects: From Alexander to Kashiwara and Vergne, http://www.math.toronto.edu/~drorbn/papers/WK0/.
[CKS] J. S. Carter, S. Kamada, and M. Saito, Diagrammatic Computations for Quandles and Cocycle Knot Invariants, Contemp. Math. 318 (2003) 51-74.
[CS] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs 55, American Mathematical Society, Providence 1998.
[Da] E. Dalvit, http://science.unitn.it/~dalvit/
[CR] A. S. Cattaneo and C. A. Rossi, Wilson Surfaces and Higher Dimensional Knot Invariants, Commun. in Math. Phys. 256-3 (2005) 513-537, arXiv:math-ph/0210037
[Fa] M. Farber, Noncommutative Rational Functions and Boundary Links, Math. Ann. 293 (1992) 543-568.
[Le] J. Levine, A Factorization of the Conway Polynomial, Comment. Math. Helv. 74 (1999) 27-53, arXiv:q-alg/9711007
[Ro] D. Roseman, Reidemeister-Type Moves for Surfaces in Four-Dimensional Space, Knot Theory, Banach Center Publications 42 (1998) 347-380.
[Wa] T. Watanabe, Configuration Space Integrals for Long n-Knots, the Alexander Polynomial and Knot Space Cohomology, Alg. and Geom. Top. 7 (2007) 47-92, arXiv:math/0609742
Continuing Joost Slingerland.

http://youtu.be/YCAOVIExVhge

 Sketch of Proof. In $4 D$ axial gauge, only "drop down" red propagators, hence in the ribbon case, no M-trivalent vertices. S integrals are ± 1 iff "ground pieces" run on nested curves as below, and exponentials arise when several propagators compete for the same double curve. And then the combinatorics is obvious...

Musings
Chern-Simons. When the domain of \bar{B} is restricted to ribbon knots, and the target of CS is restricted to trees and wheels, they agree. Why?
Is this all? What about the \vee-invariant? (the "true" triple linking number)

Gnots. In 3D, a generic immersion of S^{1} is an embedding, a knot. In 4D, a generic immersion of a surface has finitely-many double points (a gnot?). Perhaps we should be studying these?
 Finite type. What are finite-type invariants for 2-knots? What would be "chord diagrams"?

Bubble-wrap-finite-type.

There's an alternative definition of finite type in 3D, due to Goussarov (see [BN1]). The obvious parallel in 4D involves "bubble wraps". Is it any good?

Shielded tangles. In 3D, one can't zoom in and compute "the Chern-Simons invariant of a tangle". Yet there are well-defined invariants of "shielded tangles", and rules for their compositions.

What would the 4D analog be?

Will the relationship with the Kashiwara-Vergne problem [BND] necessarily arise here?
Plane curves. Shouldn't we understand integral / finite type invariants of plane curves, in the style of Arnold's J^{+}, J^{-}, and $S t[\mathrm{Ar}]$, a bit better?

Arnold

"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified)
www.katlas.org

Finite Type Invariants of Ribbon Knotted Balloons and Hoops Abstract. On my September 17 Geneva talk (ω / sep) I de-Action 1 . scribed a certain trees-and-wheels-valued invariant ζ of ribbon knotted loops and 2 -spheres in 4 -space, and my October 8 Geneva talk ($\omega /$ oct $)$ describes its reduction to the Alexander $\tilde{\mathcal{A}}^{b h}=\mathbb{Q}$ polynomial. Today I will explain how that same invariant arises completely naturally within the theory of finite type invariants of ribbon knotted loops and 2 -spheres in 4 -space.

My goal is to tell you why such an invariant is expected, yet not to derive the computable formulas.

Let $\mathcal{I}^{n}:=\langle$ pictures with $\geq n$ semi-virts $\rangle \subset \mathcal{K}^{b h}$.
We seek an "expansion"

$$
Z: \mathcal{K}^{b h} \rightarrow \operatorname{gr} \mathcal{K}^{b h}=\widehat{\bigoplus} \mathcal{I}^{n} / \mathcal{I}^{n+1}=: \mathcal{A}^{b h}
$$

satisfying "property U": if $\gamma \in \mathcal{I}^{n}$, then

$$
Z(\gamma)=\left(0, \ldots, 0, \gamma / \mathcal{I}^{n+1}, *, *, \ldots\right)
$$

Why? - Just because, and this is vastly more general. - $\left(\mathcal{K}^{b h} / \mathcal{I}^{n+1}\right)^{\star}$ is "finite-type/polynomial invariants".
Action 1 .

$$
\pi: \left\lvert\, \begin{array}{cc}
\left.\begin{array}{ll}
c & d \\
a & b
\end{array} \right\rvert\, & \varnothing_{a}^{c} \\
a
\end{array}\right.
$$

(then connect using xings or v -xings)

$$
\forall+\rightarrow \rightarrow+|\rightarrow| \rightarrow|\rightarrow+\rightarrow+\rightarrow+|
$$

Abstract

using TC

Action 2.

R3.
R3. $|\xrightarrow{|c|}| \rightarrow|\quad| \rightarrow \mid$ Exercise.

Exercise.
Prove property U.
The Bracket-Rise Theorem.

$$
\overrightarrow{S T U}_{1}: \bigvee=\ 1-X \overrightarrow{S T U}_{2}: Y=1 /-X
$$

$$
\overrightarrow{S T U}_{3}=\mathrm{TC}: 0=1 \mid=X \overrightarrow{I H X}: \underset{1}{ }=
$$ Proō $\bar{\circ}$.

Corollaries. (1) Related to Lie algebras! (2) Only trees and wheels persist.
Theorem. $\mathcal{A}^{b h}$ is a bi-algebra. The space of its primitives is $F L(T)^{H} \times C W(T)$, and $\zeta=\log Z$.

$$
\begin{aligned}
& \text { Deriving } \overrightarrow{4 T} \text {. }
\end{aligned}
$$

- The Taylor example: Take $\mathcal{K}=C^{\infty}\left(\mathbb{R}^{n}\right), \mathcal{I}=\zeta$ is computable! ζ of the Borromean tangle, to degree 5: $\{f \in \mathcal{K}: f(0)=0\}$. Then $\mathcal{I}^{n}=\left\{f: f\right.$ vanishes like $\left.|x|^{n}\right\}$ so $\mathcal{I}^{n} / \mathcal{I}^{n+1}$ is homogeneous polynomials of degree n and Z is a "Taylor expansion"! (So Taylor expansions are vastly more general than you'd think).
Plan. We'll construct a graded $\tilde{\mathcal{A}}^{\text {bh }}$, a surjective graded $\pi: \tilde{\mathcal{A}}^{b h} \rightarrow \mathcal{A}^{b h}$, and a filtered $\tilde{Z}: \mathcal{K}^{b h} \rightarrow \mathcal{A}^{b h}$ so that $\pi / / \operatorname{gr} \tilde{Z}=I d$

Trees and Wheels and Balloons and Hoops Dror Bar-Natan, Zurich, September 2013

15 Minutes on Algebra

Let T be a finite set of "tail labels" and H a finite set of "head labels". Set

$$
M_{1 / 2}(T ; H):=F L(T)^{H},
$$

" H-labeled lists of elements of the degree-completed free Lie algebra generated by $T^{\prime \prime}$.

$$
F L(T)=\left\{2 t_{2}-\frac{1}{2}\left[t_{1},\left[t_{1}, t_{2}\right]\right]+\ldots\right\} /\binom{\text { anti-symmetry }}{\text { Jacobi }}
$$... with the obvious bracket

$\left.M_{1 / 2}(u, v ; x, y)=\left\{\lambda=\left(x \rightarrow Y_{x}^{u}, y \rightarrow \underset{y}{v}-\frac{22}{7}{\underset{y}{v}}_{u}^{v}\right)^{v}\right) \ldots\right\}$
Operations $M_{1 / 2} \rightarrow M_{1 / 2}$.

$\mathcal{K}^{b h}(T ; H)$. "Ribbonknotted balloons and hoops"

[^0] Examples.
 $\epsilon_{x}: \xrightarrow{x}$

Tail Multiply $t m_{w}^{u v}$ is $\lambda \mapsto \lambda / /(u, v \rightarrow w)$, satisfies "metaassociativity", $t m_{u}^{u v} / / t m_{u}^{u w}=t m_{v}^{v w} / / t m_{u}^{u v}$.
Head Multiply $h m_{z}^{x y}$ is $\lambda \mapsto(\lambda \backslash\{x, y\}) \cup\left(z \rightarrow \operatorname{bch}\left(\lambda_{x}, \lambda_{y}\right)\right)$, where
$\operatorname{bch}(\alpha, \beta):=\log \left(e^{\alpha} e^{\beta}\right)=\alpha+\beta+\frac{[\alpha, \beta]}{2}+\frac{[\alpha,[\alpha, \beta]]+[[\alpha, \beta], \beta]}{12}+\ldots$ satisfies $\operatorname{bch}(\operatorname{bch}(\alpha, \beta), \gamma)=\log \left(e^{\alpha} e^{\beta} e^{\gamma}\right)=\operatorname{bch}(\alpha, \operatorname{bch}(\beta, \gamma))$
\qquad - δ injects u-knots into $\mathcal{K}^{b h}$ (likely u-tangles too). and hence meta-associativity, $h m_{x}^{x y} / / h m_{x}^{x z}=h m_{y}^{y z} / / h m_{x}^{x y}$. Tail by Head Action tha ${ }^{u x}$ is $\lambda \mapsto \lambda / / R C_{u}^{\lambda_{x}}$, where conjecturally (Satoh), that's all. $C_{u}^{-\gamma}: F L \rightarrow F L$ is the substitution $u \rightarrow e^{-\gamma} u e^{u}$, or more precisely,

$$
C_{u}^{-\gamma}: u \rightarrow e^{-\operatorname{ad} \gamma}(u)=u-[\gamma, u]+\frac{1}{2}[\gamma,[\gamma, u]]-\ldots,
$$

and $R C_{u}^{\gamma}=\left(C_{u}^{-\gamma}\right)^{-1}$. Then $C_{u}^{\mathrm{bch}(\alpha, \beta)}=C_{u}^{\alpha / / / R C_{u}^{-\beta}} / / C_{u}^{\beta}$ hence. $R C_{u}^{\mathrm{bch}(\alpha, \beta)}=R C_{u}^{\alpha} / / R C_{u}^{\beta / / R C_{u}^{\alpha}}$ hence "meta $u^{x y}=\left(u^{x}\right) y$ ",

$$
h m_{z}^{x y} / / t h a^{u z}=t h a^{u x} / / t h a^{u y} / / h m_{z}^{x y}
$$

and $t m_{w}^{u v} / / C_{w}^{\gamma / / t m_{w}^{u v}}=C_{u}^{\gamma / / R C_{v}^{-\gamma}} / / C_{v}^{\gamma} / / t m_{w}^{u v}$ and hence "meta $(u v)^{x}=u^{x} v^{x \prime}, t m_{w}^{u v} / / t h a^{w x}=$ tha $a^{u x} / / t h a^{v x} / / t m_{w}^{u v}$.
Wheels. Let $M(T ; H):=M_{1 / 2}(T ; H) \times C W(T)$, where $C W(T)$ is the (completed graded) vector space of cyclic words on T, or equaly well, on $F L(T)$:

Operations. On $M(T ; H)$, define $t m_{w}^{u v}$ and $h m_{z}^{x y}$ as before, and tha ${ }^{u x}$ by adding some J-spice:

$$
(\lambda ; \omega) \mapsto\left(\lambda, \omega+J_{u}\left(\lambda_{x}\right)\right) / / R C_{u}^{\lambda_{x}}
$$

where $J_{u}(\gamma):=\int_{0}^{1} d s \operatorname{div}_{u}\left(\gamma / / R C_{u}^{s \gamma}\right) / / C_{u}^{-s \gamma}$, and

Theorem Blue. All blue identities still hold.
Merge Operation. $\left(\lambda_{1} ; \omega_{1}\right) *\left(\lambda_{2} ; \omega_{2}\right):=\left(\lambda_{1} \cup \lambda_{2} ; \omega_{1}+\omega_{2}\right)$.

Operations
Punctures \& Cuts
If $\bar{X} \overline{\text { is a space, }} \bar{\pi}_{1}^{-}(\bar{X})^{-1-} \bar{K}$:
is a group, $\pi_{2}(X)$ is an Abelian group, and π_{1} acts on π_{2}.

Riddle. People often study $\pi_{1}(X)=\left[S^{1}, X\right]$ and $\pi_{2}(X)=\left[S^{2}, X\right]$. Why not $\pi_{T}(X) \quad:=$

"Meta-Group-Action" Properties.

$K / / h m_{z}^{x y}$:

- Associativities: $m_{a}^{a b} / / m_{a}^{a c}=m_{b}^{b c} / / m_{a}^{a b}$, for $m=t m, h m$.
- "(uv $)^{x}=u^{x} v^{x "}: t m_{w}^{u v} / /$ tha $a^{w x}=$ tha $a^{u x} / / t h a^{v x} / / t m_{w}^{u v}$,
- " $u^{(x y)}=\left(u^{x}\right)^{y "}: h m_{z}^{x y} / / t^{u z}=$ tha $a^{u x} / /$ tha $a^{u y} / / h m_{z}^{x y}$.

Tangle concatenations $\rightarrow \pi_{1} \ltimes \pi_{2}$. With $d m_{c}^{a b}:=t h a^{a b} / /$ $t m_{c}^{a b} / / h m_{c}^{a b}$,

Trees and Wheels and Balloons and Hoops: Why I Care
Moral. To construct an M-valued invariant ζ of (v-)tangles,The β quotient is M diviand nearly an invariant on $\mathcal{K}^{b h}$, it is enough to declare ζ onded by all relations that unithe generators, and verify the relations that δ satisfies. versally hold when when \mathfrak{g} is! The Invariant ζ. Set $\zeta\left(\epsilon_{x}\right)=(x \rightarrow 0 ; 0), \zeta\left(\epsilon_{u}\right)=(() ; 0)$, and the 2D non-Abelian Lie alge-

$$
\zeta: \quad u \bigcap_{x} \longmapsto\left(\downarrow_{x}^{u} ; 0\right) \quad \stackrel{u}{u} \longmapsto\left(-\left.\right|_{x} ^{u} ; 0\right)
$$

Theorem. ζ is (\log of) the unique homomorphic universal finite type invariant on $\mathcal{K}^{b h}$.
(... and is the tip of an iceberg) Paper in progress with Dancso, $\omega \varepsilon \beta /$ wko
 bra. Let $R=\mathbb{Q} \llbracket\left\{c_{u}\right\}_{u \in T} \rrbracket$ and
 $L_{\beta}:=R \otimes T$ with central R and with $[u, v]=c_{u} v-c_{v} u$ for $u, v \in T$. Then $F L \rightarrow L_{\beta}$ and $C W \rightarrow R$. Under this,

$$
\mu \rightarrow\left(\left(\lambda_{x}\right) ; \omega\right) \quad \text { with } \lambda_{x}=\sum_{u \in T} \lambda_{u x} u x, \quad \lambda_{u x}, \omega \in R
$$

$\operatorname{bch}(u, v) \rightarrow \frac{c_{u}+c_{v}}{e^{c_{u}+c_{v}}-1}\left(\frac{e^{c_{u}}-1}{c_{u}} u+e^{c_{u}} \frac{e^{c_{v}}-1}{c_{v}} v\right)$,
${ }^{\text {if }} \gamma=\sum \gamma_{v} v$ then with $c_{\gamma}:=\sum \gamma_{v} c_{v}$,
$u / / R C_{u}^{\gamma}=\left(1+c_{u} \gamma_{u} \frac{e^{c_{\gamma}}-1}{c_{\gamma}}\right)^{-1}\left(e^{c_{\gamma}} u-c_{u} \frac{e^{c_{\gamma}}-1}{c_{\gamma}} \sum_{v \neq u} \gamma_{v} v\right)$
$\operatorname{div}_{u} \gamma=c_{u} \gamma_{u}$, and $J_{u}(\gamma)=\log \left(1+\frac{e^{c \gamma}-1}{c_{\gamma}} c_{u} \gamma_{u}\right)$, so ζ is
IIf 而而 f ormula-computable to all orders! Can we simplify?
Repackaging. Given $\left(\left(x \rightarrow \lambda_{u x}\right) ; \omega\right)$, set $c_{x}:=\sum_{v} c_{v} \lambda_{v x}$ replace $\lambda_{u x} \rightarrow \alpha_{u x}:=c_{u} \lambda_{u x} \frac{e^{c_{x}-1}}{c_{x}}$ and $\omega \rightarrow e^{\omega}$, use $t_{u}=e^{c_{u}}$ and write $\alpha_{u x}$ as a matrix. Get " β calculus".
See also $\omega \varepsilon \beta /$ tenn, $\omega \varepsilon \beta /$ bonn, $\omega \varepsilon \beta /$ swiss, $\omega \varepsilon \beta /$ portfolio
ζ is computable! ζ of the Borromean tangle, to degree 5:

Tensorial Interpretation. Let \mathfrak{g} be a finite dimensional Lie algebra (any!). Then there's $\tau: F L(T) \rightarrow \operatorname{Fun}\left(\oplus_{T} \mathfrak{g} \rightarrow \mathfrak{g}\right)$ and $\tau: C W(T) \rightarrow \operatorname{Fun}\left(\oplus_{T} \mathfrak{g}\right)$. Together, $\tau: M(T ; H) \rightarrow$ $\operatorname{Fun}\left(\oplus_{T} \mathfrak{g} \rightarrow \oplus_{H} \mathfrak{g}\right)$, and hence

$$
e^{\tau}: M(T ; H) \rightarrow \operatorname{Fun}\left(\oplus_{T} \mathfrak{g} \rightarrow \mathcal{U}^{\otimes H}(\mathfrak{g})\right)
$$

ξ and BF Theory. (See Cattaneo-Rossi, arXiv:math-ph/0210037) Let A denote a \mathfrak{g} connection on S^{4} with curvature F_{A}, and B a \mathfrak{g}^{*}-valued 2 -form on S^{4}. For a hoop γ_{x}, let $\operatorname{hol}_{\gamma_{x}}(A) \in \mathcal{U}(\mathfrak{g})$ be the holonomy of A along γ_{x}. For a ball γ_{u}, let $\mathcal{O}_{\gamma_{u}}(B) \in \mathfrak{g}^{*}$ be (roughly) the integral of B (transported via A to ∞) on γ_{u}. Loose Conjecture. For $\gamma \in \mathcal{K}(T ; H)$,

$$
\int \mathcal{D} A \mathcal{D} B e^{\int B \wedge F_{A}} \prod_{u} e^{\left.\mathcal{O}_{\gamma_{u}}(B)\right)} \bigotimes_{x} \operatorname{hol}_{\gamma_{x}}(A)=e^{\tau}(\zeta(\gamma))
$$

That is, ζ is a complete evaluation of the BF TQFT.
β Calculus. Let $\beta(T ; H)$ be

$\left\{\begin{array}{c\|ccc\|l}\omega & x & y & \cdots & \omega \text { and the } \alpha_{u x} \text { 's are } \\ \hline u & \alpha_{u x} & \alpha_{u y} & \cdot & \begin{array}{l}\text { rational functions in } \\ v\end{array} \alpha_{v x} \\ \alpha_{v y} & \cdot & \begin{array}{l}\text { variables } t_{u}, \text { one for } \\ \vdots\end{array} & \cdot & \cdot \\ \text { each } u \in T .\end{array}\right\}$,$\omega_{1}$ H_{1} T_{1} α_{1} ω_{2} H_{2} T_{2} α_{2} $=$$\omega_{1} \omega_{2}$ H_{1} H_{2} T_{1} α_{1} 0 T_{2} 0α_{2} $h m_{z}^{x y}:$$\omega$ x y \cdots \vdots α β $\gamma$$\mapsto$$\omega$ z \cdots \vdots $\alpha+\beta+\langle\alpha\rangle \beta$ γ, $u x:$$\omega$ x \cdots α β \vdots γ $\delta$$\quad$$\omega \epsilon$ x \cdots u $\alpha(1+\langle\gamma\rangle / \epsilon)$ $\beta(1+\langle\gamma\rangle / \epsilon)$ \vdots γ / ϵ $\delta-\gamma \beta / \epsilon$	

where $\epsilon:=1+\alpha,\langle\alpha\rangle:=\sum_{v} \alpha_{v}$, and $\langle\gamma\rangle:=\sum_{v \neq u} \gamma_{v}$, and let

On long knots, ω is the Alexander polynomial!
Why happy? An ultimate Alexander inva-
riant: Manifestly polynomial (time and si-
ze) extension of the (multivariable) Alexan-
der polynomial to tangles. Every step of the
computation is the computation of the inva-
riant of some topological thing (no fishy Gaussian elimination). If there should be an Alexander invariant with a computable algebraic categorification, it is this one. See also $\omega \varepsilon \beta /$ regina $\omega \varepsilon \beta /$ caen $\omega \varepsilon \beta /$ newton.

Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 1

Dror Bar-Natan in Montreal, June 2013.
http://www.math.toronto.edu/~drorbn/Talks/Montreal-1306/
Abstract. I will define "meta-groups" and explain how one specificAlexander Issues.
meta-group, which in itself is a "meta-bicrossed-product", gives rise• Quick to compute, but computation departs from topology.
to an "ultimate Alexander invariant" of tangles, that contains the Extends to tangles, but at an exponential cost.
Alexander polynomial (multivariable, if you wish), has extremely

- Hard to categorify.
good composition properties, is evaluated in a topologically mean- Idea. Given a group G and two "YB"
ingful way, and is least-wasteful in a computational sense. If you
believe in categorification, that's a wonderful playground.
pairs $R^{ \pm}=\left(g_{o}^{ \pm}, g_{u}^{ \pm}\right) \in G^{2}$, map them
This work is closely related to work by Le Dimet (Com-to xings and "multiply along", so that

ment. Math. Helv. 67 (1992) 306-315), Kirk, Livingston and Wang (arXiv:math/9806035) and Cimasoni and Turaev (arXiv:math.GT/0406269).
See also Dror Bar-Natan and Sam Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, arXiv:1302.5689.

Sam Selmani

This Fails! R2 implies that $g_{o}^{ \pm} g_{o}^{\mp}=e=g_{u}^{ \pm} g_{u}^{\mp}$ and then R3
 implies that g_{o}^{+}and g_{u}^{+}commute, so the result is a simple counting invariant.
A Group Computer. Given G, can store group elements and perform operations on them:

Also has S_{x} for inversion, e_{x} for unit insertion, d_{x} for register dele tion, $\Delta_{x y}^{z}$ for element cloning, ρ_{y}^{x} for renamings, and $\left(D_{1}, D_{2}\right) \mapsto$ $D_{1} \cup D_{2}$ for merging, and many obvious composition axioms relat ing those.
$P=\left\{x: g_{1}, y: g_{2}\right\} \Rightarrow P=\left\{d_{y} P\right\} \cup\left\{d_{x} P\right\}$
A Meta-Group. Is a similar "computer", only its internal structure is unknown to us. Namely it is a collection of sets $\left\{G_{\gamma}\right\}$ indexed by all finite sets γ, and a collection of operations $m_{z}^{x y}, S_{x}, e_{x}, d_{x}, \Delta_{x y}^{z}$ (sometimes), ρ_{y}^{x}, and \cup, satisfying the exact same linear properties.
Example 0. The non-meta example, $G_{\gamma}:=G^{\gamma}$.
Example 1. $G_{\gamma}:=M_{\gamma \times \gamma}(\mathbb{Z})$, with simultaneous row and column operations, and "block diagonal" merges. Here if $P=\left(\begin{array}{lll}x: & a & b \\ y: & c & d\end{array}\right)$ then $d_{y} P=(x: a)$ and $d_{x} P=(y: d)$ so $\left\{d_{y} P\right\} \cup\left\{d_{x} P\right\}=\left(\begin{array}{ccc}x: & a & 0 \\ y: & 0 & d\end{array}\right) \neq P$. So this G is truly meta.

A Standard Alexander Formula. Label the arcs 1 through $(n+1)=1$, make an $n \times n$ matrix as below, delete one row and one column, and compute the determinant:

Claim. From a meta-group G and YB elements $R^{ \pm} \in G_{2}$ we can construct a knot/tangle invariant.
Bicrossed Products. If $G=H T$ is a group presented as a product of two of its subgroups, with $H \cap T=\{e\}$, then also $G=T H$ and G is determined by H, T, and the "swap" map $s w^{t h}:(t, h) \mapsto\left(h^{\prime}, t^{\prime}\right)$ defined by $t h=h^{\prime} t^{\prime}$. The map $s w$ satisfies (1) and (2) below; conversely, if $s w: T \times H \rightarrow H \times T$ satisfies (1) and (2) (+ lesser conditions), then (3) defines a group structure on $H \times T$, the "bicrossed product".

Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial, 2

A Meta-Bicrossed-Product is a collection of sets $\beta(\eta, \tau)$ and
I mean business!

```
Simp = Factor; SetAttributes[ [ Collect, Listable];
Collect[B[\omega_, __]] := B[\betaSimp[ }\omega]\mathrm{ ,
```

Collect $\left[\Lambda, h_{-}, \operatorname{Collect}\left[\#, t_{-}, \beta\right.\right.$ Simp $\left.\left.] \&\right]\right]$;
Form[B[$\omega, \Lambda]]$:= Module $\{$ ts, hs, M\},
$\mathrm{ts}=$ Union[Cases[B[$\omega, \Lambda], \mathrm{t}_{u_{-}} \Leftrightarrow u$, Infinity]];
$\mathrm{hs}=$ Union[Cases[B[$\omega, \Lambda], \mathrm{h}_{\mathrm{x}_{-}}: \rightarrow \mathrm{x}$, Infinity]];
$\mathrm{hs}=$ Union [Cases $\left[B[\omega, \Lambda], \mathrm{h}_{x}: \rightarrow x\right.$, Infinity]];
$M=$ Outer $\left[\beta\right.$ Simp [Coefficient $\left.\left.\left[\Lambda, h_{\# 1} \mathrm{t}_{\# 2}\right]\right] \&, \mathrm{hs}, \mathrm{ts}\right] ;$
PrependTo[$\left.M, \mathrm{t}_{\# /} \& / @ \mathrm{ts}\right]$;
$M=$ Prepend $\left[\right.$ Transpose $[M]$, Prepend $\left.\left[h_{\neq} \& / @ h s, \omega\right]\right]$;
MatrixForm [M]] ;
β Form[else] := else /. $\beta B: \rightarrow \beta$ Form $[\beta]$;
Format $[\beta-B$, StandardForm $]:=\beta$ Form $[\beta]$;
$h_{j} \in \eta, t_{i} \in \tau$, and ω and the $\alpha_{i j}$ are rational functions in a variable X with $\}$, $\omega(1)=1$ and $\alpha_{i j}(1)=0$

$$
\left.t m_{w}^{u v}: \begin{array}{c|c|c|c}
\omega & \cdots \\
\hline t_{u} & \alpha & & \omega \\
t_{v} & \beta & \mapsto & \ldots \\
\vdots & t_{w} & \alpha+\beta \\
& & & \vdots
\end{array}\right]
$$

$$
\begin{array}{l|l|l}
\omega_{1} & \eta_{1} \\
\hline \tau_{1} & \alpha_{1} & \omega_{2} \\
\hline \tau_{2} & \eta_{2} \\
\hline
\end{array}
$$

$$
=\begin{array}{c|cc}
\omega_{1} \omega_{2} & \eta_{1} & \eta_{2} \\
\hline \tau_{1} & \alpha_{1} & 0 \\
\tau_{2} & 0 & \alpha_{2}
\end{array}
$$

$$
h m_{z}^{x y}: \begin{array}{c|ccc}
\omega & h_{x} & h_{y} & \cdots \\
\hline \vdots & \alpha & \beta & \gamma
\end{array} \mapsto \begin{array}{c|cc}
\omega & h_{z} & \cdots \\
\hline \vdots & \alpha+\beta+\langle\alpha\rangle \beta & \gamma
\end{array},
$$

where $\epsilon:=1+\alpha$ and $\langle c\rangle:=\sum_{i} c_{i}$, and let

$$
R_{a b}^{p}:=\begin{array}{c|cc}
1 & h_{a} & h_{b} \\
\hline t_{a} & 0 & X-1 \\
t_{b} & 0 & 0
\end{array}
$$

$$
R_{a b}^{m}:=\begin{array}{c|cc}
1 & h_{a} & h_{b} \\
\hline t_{a} & 0 & X^{-1}-1 . \\
t_{b} & 0 & 0
\end{array} .
$$

Theorem. Z^{β} is a tangle invariant (and more). Restricted to knots, the ω part is the Alexander polynomial. On braids, it ${ }^{\mathrm{DD}}$ is equivalent to the Burau representation. A variant for links contains the multivariable Alexander polynomial.
Why Happy? • Applications to w-knots.

- Everything that I know about the Alexander polynomial can be expressed cleanly in this language (even if without proof), except HF, but including genus, ribbonness, cabling, v-knots, knotted graphs, etc., and there's potential for vast generalizations.
- The least wasteful "Alexander for tangles" I'm aware of.
- Every step along the computation is the invariant of something.
- Fits on one sheet, including implementation \& propaganda.
proza.
Further meta-monoids. Π (and variants), \mathcal{A} (and quotients)
$v T, \ldots$

A Partial To Do List. 1. Where does it more simply come from?
2. Remove all the denominators.
3. How do determinants arise in this context?
4. Understand links ("meta-conjugacy classes").
$\left\langle\mu_{-}\right\rangle:=\mu / \cdot t_{-} \rightarrow 1$;
$\mathrm{tm}_{u_{-} v_{-} \rightarrow r_{-}}\left[\beta_{-}\right]:=\beta$ Collect $\left[\beta / . \mathrm{t}_{\mathrm{ulv}} \rightarrow \mathrm{t}_{\mathrm{w}}\right]$; $\mathrm{hm}_{\mathrm{X}_{-1} y_{-} \rightarrow z_{-}}\left[\mathrm{B}\left[\omega_{-}, \Lambda_{-}\right]\right]:=$Module $[$ $\left\{\alpha=D\left[\Lambda, h_{x}\right], \beta=D\left[\Lambda, h_{y}\right], \gamma=\Lambda / . h_{x \mid y} \rightarrow 0\right\}$, $\mathrm{B}\left[\omega,(\alpha+(1+\langle\alpha\rangle) \beta) h_{z}+\gamma\right] / /$ BCollect];
$\mathbf{s w}_{\underline{U}_{-} x_{-}}\left[\mathbf{B}\left[\omega_{-}, \Lambda_{-}\right]\right]:=\operatorname{Module}[\{\alpha, \beta, \gamma, \delta, \epsilon\}$,
 $\gamma=\mathrm{D}\left[\Lambda, \mathrm{h}_{\mathrm{x}}\right] / . \mathrm{t}_{u} \rightarrow 0 ; \quad \delta=\Lambda / . \mathrm{h}_{\mathrm{x}} \mid \mathrm{t}_{\mathrm{u}} \rightarrow 0 ;$ $\epsilon=1+\alpha ;$ $B\left[\omega * \in, \alpha(1+\langle\gamma\rangle / \epsilon) h_{x} \mathrm{t}_{u}+\beta(1+\langle\gamma\rangle / \epsilon) \mathrm{t}_{u}\right.$

$\mathrm{gm}_{a_{-}-c_{-}}\left[\beta_{-}\right]:=\beta / / \mathrm{sw}_{a b} / / \mathrm{hm}_{a b+c} / / \mathrm{tm}_{a b \rightarrow c}$;
в $1: \mathrm{B}\left[\omega 1_{-}, \Lambda 1 _\right] \mathrm{B}\left[\omega 2_{-}, \Lambda 2\right]:=\mathrm{B}[\omega 1 * \omega 2, \Delta 1+\Lambda 2]$; $\mathrm{RP}_{\mathrm{a}_{-} b_{-}}:=\mathrm{B}\left[1,(\mathrm{X}-1) \mathrm{t}_{\mathrm{a}_{b}}\right]$; $\mathrm{Rm}_{a_{-} b_{-}}:=\mathrm{B}\left[1,\left(\mathrm{X}^{-1}-1\right) \mathrm{t}_{\mathrm{a}} \mathrm{h}_{b}\right] ;$
$\left\{\beta=\mathrm{B}\left[\omega, \operatorname{Sum}\left[\alpha_{10}{ }_{i+j} \mathrm{t}_{\mathrm{i}} \mathrm{h}_{\mathrm{j}},\{\mathrm{i},\{1,2,3\}\},\{j,\{4,5\}\}\right]\right]\right.$,
$\left.\left(\beta / / \operatorname{tm}_{12 \rightarrow 1} / / \mathrm{sw}_{14}\right)=\left(\beta / / \mathrm{sw}_{24} / / \mathrm{sw}_{14} / / \mathrm{tm}_{12 \rightarrow 1}\right)\right\}$

$\underbrace{}_{4}$| $\left\{\mathrm{Rm}_{51} \mathrm{Rm}_{62} \mathrm{Rp}_{34} / / \mathrm{gm}_{14 \rightarrow 1} / / \mathrm{gm}_{25 \rightarrow 2} / / \mathrm{gm}_{36 \rightarrow 3}\right.$, |
| :--- |
| $\left.\mathrm{Rp}_{61} \mathrm{Rm}_{24} \mathrm{Rm}_{35} / / \mathrm{gm}_{14 \rightarrow 1} / / \mathrm{gm}_{25 \rightarrow 2} / / \mathrm{gm}_{36 \rightarrow 3}\right\}$ |

$\left.V^{+}+\left\{\begin{array}{ccc}1 & h_{1} & h_{2} \\ t_{2} & -\frac{-1+X}{x} & 0 \\ t_{3} & \frac{-1+X}{x} & -\frac{-1+X}{x}\end{array}\right),\left(\begin{array}{ccc}1 & h_{1} & h_{2} \\ t_{2} & -\frac{-1+x}{x} & 0 \\ t_{3} & \frac{-1+X}{x} & -\frac{-1+X}{x}\end{array}\right)\right\}$
\ldots divide and conquer!

$\left(\begin{array}{ccccccccc}1 & h_{1} & h_{3} & h_{5} & h_{7} & h_{9} & h_{11} & h_{13} & h_{15} \\ t_{2} & 0 & 0 & 0 & -\frac{-1+x}{x} & 0 & 0 & 0 & 0 \\ t_{4} & 0 & 0 & 0 & 0 & 0 & -\frac{-1+x}{x} & 0 & 0 \\ t_{6} & 0 & 0 & 0 & 0 & 0 & 0 & -1+x & 0 \\ t_{8} & 0 & -\frac{-1+x}{x} & 0 & 0 & 0 & 0 & 0 & 0 \\ t_{10} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1+x \\ t_{12} & -\frac{-1+x}{x} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ t_{14} & 0 & 0 & 0 & 0 & -1+x & 0 & 0 & 0 \\ t_{16} & 0 & 0 & -1+x & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Further meta-bicrossed-products. Π (and variants), $\overrightarrow{\mathcal{A}}$ (and7. Categorify.
quotients), $M_{0}, M, \mathcal{K}^{b h}, \mathcal{K}^{r b h}, \ldots$
Meta-Lie-algebras. \mathcal{A} (and quotients), \mathcal{S}, \ldots
8. Do the same in other natural quotients of the v/w-story.
Meta-Lie-bialgebras. $\overrightarrow{\mathcal{A}}$ (and quotients),
I don't understand the relationship between gr and H, as it appears, for example, in braid theory.
example

Dror Bar-Natan: Talks: Bern-131104:

The Kashiwara-Vergne Problem and Topology

Abstract. I will describe a general machine, a close cousin of Taylor's theorem, whose inputs are topics in topology and whose outputs are problems in algebra. There are many inputs the machine can take, and many outputs it produces, but I will concentrate on just one input/output pair. When fed with a certain class of knotted 2-dimensional objects in 4-dimensional space, it outputs the Kashiwara-Vergne Problem ($1978 \omega / \mathrm{KV}$, solved Alekseev-Meinrenken $2006 \omega / \mathrm{AM}$, elucidated Alekseev-Torossian 2008-2012 ω /AT), a problem about convolutions on Lie groups and Lie algebras.
The Kashiwara-Vergne Conjecture. There exist two series F and G in the completed free Lie algebra $F L$ in generators x and y so that Kashiwara $x+y-\log e^{y} e^{x}=\left(1-e^{-a d x}\right) F+\left(e^{\operatorname{ad} y}-1\right) G$ in $F L$ and so that with $z=\log e^{x} e^{y}$,

$$
\begin{aligned}
& \operatorname{tr}(\operatorname{ad} x) \partial_{x} F+\operatorname{tr}(\operatorname{ad} y) \partial_{y} G \quad \text { in cyclic words } \\
= & \frac{1}{2} \operatorname{tr}\left(\frac{\operatorname{ad} x}{e^{\operatorname{ad} x}-1}+\frac{\operatorname{ad} y}{e^{\operatorname{ad} y}-1}-\frac{\operatorname{ad} z}{e^{\text {ad } z}-1}-1\right)
\end{aligned}
$$

Implies the loosely-stated convolutions statement: Convolutions of invariant functions on a Lie group agree with convolutions of invariant functions on its Lie algebra.

> Tor The Machine. Let G be a group, $\mathcal{K}=\mathbb{Q} G=\{\Sigma$ $\left.\mathbb{Q}, g_{i} \in G\right\}$ its group-ring, $\mathcal{I}=\left\{\sum a_{i} g_{i}: \sum a_{i}=0\right\} \subset \mathcal{K}$ its augmentation ideal. Let

$$
\mathcal{A}=\operatorname{gr} \mathcal{K}:=\bigoplus_{m>0} \mathcal{I}^{m} / \mathcal{I}^{m+1} . \quad \begin{aligned}
& \quad \text { variants. }
\end{aligned}
$$

Note that \mathcal{A} inherits a product from G.
Definition. A linear $Z: \mathcal{K} \rightarrow \mathcal{A}$ is an "expansion" if for any $\gamma \in \mathcal{I}^{m}, Z(\gamma)=\left(0, \ldots, 0, \gamma / \mathcal{I}^{m+1}, *, \ldots\right)$, and a "homomorphic expansion" if in addition it preserves the product. Example. Let $\mathcal{K}=C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\mathcal{I}=\{f: f(0)=0\}$. Then $\mathcal{I}^{m}=\left\{f: f\right.$ vanishes like $\left.|x|^{m}\right\}$ so $\mathcal{I}^{m} / \mathcal{I}^{m+1}$ degree m homogeneous polynomials and $\mathcal{A}=\{$ power series $\}$. The Taylor series is a homomorphic expansion!

P.S. $\left(\mathcal{K} / \mathcal{I}^{m+1}\right)^{*}$ is Vassiliev The Double Inflation Procedure.

Riddle. What band, inflated, gives the "Wen"?
 are "tiles" that can be $\overline{\text { com }} \overline{\mathrm{m}} \overline{\bar{p}} \bar{s} \overline{\mathrm{e}} \mathrm{d}^{-}$in arbitrary planar ways to make bigger

The Machine generalizes to arbitrary algebraic structures!

Homomorphic expansions for a filtered algebraic structure \mathcal{K} :

$$
\begin{array}{cccccccc}
\mathrm{ops}^{\mathcal{C}} \mathcal{K}= & \mathcal{K}_{0} & \supset & \mathcal{K}_{1} & \supset & \mathcal{K}_{2} & \supset & \mathcal{K}_{3} \\
\Downarrow & & & & \downarrow_{Z} & &
\end{array}
$$

$\operatorname{ops} \sigma$ gr $\mathcal{K}:=\mathcal{K}_{0} / \mathcal{K}_{1} \oplus \mathcal{K}_{1} / \mathcal{K}_{2} \oplus \mathcal{K}_{2} / \mathcal{K}_{3} \oplus \mathcal{K}_{3} / \mathcal{K}_{4} \oplus \ldots$ An expansion is a filtration respecting $Z: \mathcal{K} \rightarrow \operatorname{gr} \mathcal{K}$ that "covers" the identity on $\operatorname{gr} \mathcal{K}$. A homomorphic expansion is an expansion that respects all relevant "extra" operations.
Filtered algebraic structures are cheap and plenty. In any \mathcal{K}, allow formal linear combinations, let \mathcal{K}_{1} be the ideal generated by differences (the "augmentation ideal"), and let $\mathcal{K}_{m}:=\left\langle\left(\mathcal{K}_{1}\right)^{m}\right\rangle$ (using all available "products").

- Has kinds, objects, operations, and maybe constants.
- Perhaps subject to some axioms.
- We always allow formal linear combinations.

Example: Pure Braids. $P B_{n}$ is generated by $x_{i j}$, "strand i goes around strand j once", modulo "Reidemeister moves". $A_{n}:=\operatorname{gr} P B_{n}$ is generated by $t_{i j}:=x_{i j}-1$, modulo the $4 T$ relations $\left[t_{i j}, t_{i k}+t_{j k}\right]=0$ (and some lesser ones too). Much happens in A_{n}, including the Drinfel'd theory of associators. Our case(s).

$$
\mathcal{K} \underset{\begin{array}{c}
\text { solving finitely many } \\
\text { equations in finitely } \\
\text { many unknowns }
\end{array}}{Z:} \underset{\text { gr }}{\mathcal{K}}: \overline{\mathcal{K}} \xrightarrow[\begin{array}{l}
\text { low algebra: pic- } \\
\text { tures represent } \\
\text { formulas }
\end{array}]{\frac{\text { given a "Lie" }}{\text { algebra } \mathfrak{g}}} \text { " } \mathcal{U}(\mathfrak{g}) \text { " }
$$

\mathcal{K} is knot theory or topology; $\operatorname{gr} \mathcal{K}$ is finite combinatorics: bounded-complexity diagrams modulo simple relations.

A Ribbon 2-Knot is a surface S embedded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with $D_{2} \cap \partial B=\partial D_{2}$ modulo isotopies of S alone.
 The w-relations include R234, VR1234, M, Overcrossings Commute (OC) but not UC, $W^{2}=1$, and funny interactions
为 Just for fun.

pansion Z for trivalent w-tangles. In particular, Z should respect $R 4$ and intertwine annulus and disk unzips:

$-$

(2)

(3)

Diagrammatic statement. Let $R=\exp \hat{\wedge} \in \mathcal{A}^{w}(\uparrow \uparrow)$. There exist $\omega \in \mathcal{A}^{w}(\uparrow)$ and $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that
(1)

Algebraic statement. With $I \mathfrak{g}:=\mathfrak{g}^{*} \rtimes \mathfrak{g}$, with $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow$ $\hat{\mathcal{U}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ the obvious projection, with S the antipode of $\mathcal{U}(I \mathfrak{g})$, with W the automorphism of $\hat{\mathcal{U}}(I \mathfrak{g})$ induced by flipping the sign of \mathfrak{g}^{*}, with $r \in \mathfrak{g}^{*} \otimes \mathfrak{g}$ the identity element and with $R=e^{r} \in \hat{\mathcal{U}}(I \mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $\omega \in \hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ and $V \in \hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2}$ so that
(1) $V(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$
(2) $V \cdot S W V=1$
(3) $(c \otimes c)(V \Delta(\omega))=\omega \otimes \omega$

Unitary statement. There exists $\omega \in \operatorname{Fun}(\mathfrak{g})^{G}$ and an (infinite order) tangential differential operator V defined on $\operatorname{Fun}\left(\mathfrak{g}_{x} \times\right.$ g_{y}) so that
(1) $V \widehat{e^{x+y}}=\widehat{e^{x}} \widehat{e^{y}} V$ (allowing $\hat{\mathcal{U}}(\mathfrak{g})$-valued functions)
(2) $V V^{*}=I$
(3) $V \omega_{x+y}=\omega_{x} \omega_{y}$

Group-Algebra statement. There exists $\omega^{2} \in \operatorname{Fun}(\mathfrak{g})^{G}$ so that for every $\phi, \psi \in \operatorname{Fun}(\mathfrak{g})^{G}$ (with small support), the following holds in $\hat{\mathcal{U}}(\mathfrak{g})$:
$\left(\operatorname{shhh}, \omega^{2}=j^{1 / 2}\right)$

$$
\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x+y}^{2} e^{x+y}=\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y}
$$

w-Jacobi diagrams and $\mathcal{A} . \mathcal{A}^{w}(Y \uparrow) \cong \mathcal{A}^{w}(\uparrow \uparrow \uparrow)$ is

Diagrammatic to Algebraic. With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$, we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

Unitary \Longleftrightarrow Algebraic. The key is to interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differential operators on $\operatorname{Fun}(\mathfrak{g})$:

- $\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator.
- $x \in \mathfrak{g}$ becomes a tangential derivation, in the direction of the action of ad $x:(x \varphi)(y):=\varphi([x, y])$.
- $c: \hat{U}(I \mathfrak{g}) \rightarrow \hat{U}(I \mathfrak{g}) / \mathcal{U}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ is "the constant term". Unitary \Longrightarrow Group-Algebra. $\iint \omega_{x+y}^{2} e^{x+y} \phi(x) \psi(y)$ $=\left\langle\omega_{x+y}, \omega_{x+y} e^{x+y} \phi(x) \psi(y)\right\rangle=\left\langle V \omega_{x+y}, V e^{x+y} \phi(x) \psi(y) \omega_{x+y}\right\rangle$ $=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} V \phi(x) \psi(y) \omega_{x+y}\right\rangle=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} \phi(x) \psi(y) \omega_{x} \omega_{y}\right\rangle$ $=\iint \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y} \phi(x) \psi(y)$.
Convolutions and Group Algebras (ignoring all Jacobians). If G is finite, A is an algebra, $\tau: G \rightarrow A$ is multiplicative then $(\operatorname{Fun}(G), \star) \cong(A, \cdot)$ via $L: f \mapsto \sum f(a) \tau(a)$. For Lie (G, \mathfrak{g}),

Convolutions statement (Kashiwara-Vergne). Convolutions of with $L_{0} \psi=\int \psi(x) e^{x} d x \in \hat{\mathcal{S}}(\mathfrak{g})$ and $L_{1} \Phi^{-1} \psi=\int \psi(x) e^{x} \in$ invariant functions on a Lie group agree with convolutions $\hat{\mathcal{H}}(\mathfrak{g})$. Given $\psi_{i} \in \operatorname{Fun}(\mathfrak{g})$ compare $\Phi^{-1}\left(\psi_{1}\right) \star \Phi^{-1}\left(\psi_{2}\right)$ and of invariant functions on its Lie algebra. More accurately, let G be a finite dimensional Lie group and let \mathfrak{g} be its Lie algebra, let $j: \mathfrak{g} \rightarrow \mathbb{R}$ be the Jacobian of the exponential map $\exp : \mathfrak{g} \rightarrow G$, and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(\mathfrak{g})$ be given by $\Phi(f)(x):=j^{1 / 2}(x) f(\exp x)$. Then if $f, g \in \operatorname{Fun}(G)$ are Ad-invariant and supported near the identity, then

$$
\Phi(f) \star \Phi(g)=\Phi(f \star g) .
$$

$\Phi^{-1}\left(\psi_{1} \star \psi_{2}\right)$ in $\hat{\mathcal{U}}(\mathfrak{g}):$
(shhh, $L_{0 / 1}$ are "Laplace transforms") \star in $G: \iint \psi_{1}(x) \psi_{2}(y) e^{x} e^{y}$ \star in $\mathfrak{g}: \iint \psi_{1}(x) \psi_{2}(y) e^{x+y}$ We skipped... • The Alexander • v-Knots, quantum groups and polynomial and Milnor numbers. Etingof-Kazhdan.

- u-Knots, Alekseev-Torossian, - BF theory and the successful and Drinfel'd associators.
religion of path integrals.
- The simplest problem hyperbolic geometry solves.

[^0]:

