Abstract. I will describe a semi-rigorous reduction to computable combinatorics of perturbative BF theory (Cattaneo-Rossi [CR]), in the case of ribbon 2-links. Also, I will explain how and why my approach may or may not work in the non-ribbon case. Weak this result is, and at least partially already known (Watanabe [Wa]). Yet in the ribbon case, the resulting invariant is a universal finite type invariant, a gadget that significantly generalizes and clarifies the Alexander polynomial and that is closely related to the Kashiwara-Vergne problem. I cannot rule out the possibility that the corresponding gadget in the non-ribbon case will be as intersting.

BF Following [CR]. $A \in \Omega^{1}\left(M=\mathbb{R}^{4}, \mathfrak{g}\right), B \in \Omega^{2}\left(\mathbb{R}^{4}, \mathfrak{g}^{*}\right)$,

$$
S(A, B):=\int_{\mathbb{R}^{4}}\left\langle B, F_{A}\right\rangle .
$$

With $f:\left(S=\mathbb{R}^{2}\right) \rightarrow \mathbb{R}^{4}, \xi \in \Omega^{0}\left(\mathbb{R}^{2}, \mathfrak{g}\right), \beta \in \Omega^{1}\left(\mathbb{R}^{2}, \mathfrak{g}^{*}\right)$, set

$$
O(A, B, f):=\int \mathcal{D} \xi \mathcal{D} \beta \exp \left(\frac{i}{\hbar} \int_{\mathbb{R}^{2}}\left\langle\xi, d_{f^{*} A} \beta+f^{*} B\right\rangle\right) .
$$

* sta perturbation theory box * A word about axial gauge.

A BF Feynman Diagram.

References.

[CR] A. S. Cattaneo and C. A. Rossi, Wilson Surfaces and Higher
Dimensional Knot Invariants, Commun. in Math. Phys. 256-3
(2005) 513-537, arXiv:math-ph/0210037.
[Wa] T. Watanabe, Configuration Space Integrals for Long n-Knots, the Alexander Polynomial and Knot Space Cohomology, Alg. and Geom. Top. 7 (2007) 47-92, arXiv:math/0609742

