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Abstract.I will describe a semi-rigorous reduction to computable
combinatorics of perturbative BF theory (Cattaneo-Rossi [CR]),
in the case of ribbon 2-links. Also, I will explain how and whymy
approach may or may not work in the non-ribbon case. Weak this
result is, and at least partially already known (Watanabe [Wa]).
Yet in the ribbon case, the resulting invariant is a universal finite
type invariant, a gadget that significantly generalizes andclari-
fies the Alexander polynomial and that is closely related to the
Kashiwara-Vergne problem. I cannot rule out the possibility that
the corresponding gadget in the non-ribbon case will be as inter-
esting.
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BF Following [CR]. A ∈ Ω1(M = R4, g), B ∈ Ω2(R4, g∗),

S(A,B) ≔
∫

R4
〈B, FA〉.

With f : (S = R2)→ R4, ξ ∈ Ω0(R2, g), β ∈ Ω1(R2, g∗), set

O(A,B, f ) ≔
∫

DξDβexp

(

i
~

∫

R2

〈

ξ,df ∗Aβ + f ∗B
〉

)

.

A BF Feynman Diagram.
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“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org
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