Abstract. I will describe a semi-rigorous reduction of perturba- The BF Feynman Rules. For tive BF theory (Cattaneo-Rossi [CR]) to computable combina- an edge e, let Φ_{e} be its ditorics, in the case of ribbon 2-links. Also, I will explain how rection, in S^{3} or S^{1}. Let ω_{3} and why my approach may or may not work in the non-ribbon and ω_{1} be volume forms on case. Weak this result is, and at least partially already known S^{3} and S_{1}. Then for a 2-link

Cattaneo Rossi (Watanabe Wal). Yet in the ribbon case, the resulting invariant is $\left(f_{t}\right)_{t \in T}$,
a universal finite type invariant, a gadget that significantly generalizes and clarifies the Alexander polynomial and that is closely related to the Kashiwara-Vergne problem. I cannot rule out the possibility that the corresponding gadget in the non-ribbon case will be as interesting.
(good news in highlight)
s an invariant in $C W(F L(T)) \rightarrow C W(T)$, "cyclic words in T ".

$$
00
$$

BF Following $[\mathrm{CR}] . A \in \Omega^{1}\left(M=\mathbb{R}^{4}, \mathfrak{g}\right), B \in \Omega^{2}\left(M, \mathrm{~g}^{*}\right)$,

$$
S(A, B):=\int_{M}\left\langle B, F_{A}\right\rangle .
$$

With $f:\left(S=\mathbb{R}^{2}\right) \rightarrow M, \xi \in \Omega^{0}(S, \mathfrak{g}), \beta \in \Omega^{1}\left(S, \mathfrak{g}^{*}\right)$, set $O(A, B, f):=\int \mathcal{D} \xi \mathcal{D} \beta \exp \left(\frac{i}{\hbar} \int_{S}\left\langle\xi, d_{f^{*} A} \beta+f^{*} B\right\rangle\right)$

A BF Feynman Diagram.

(only double curves are allowed in ribbon 2-knots)

Theorem 1 (with Cattaneo (credit, no blame)). In the ribbon case,

Theorem 2. Using Gauss diagrams to represent knots and T component pure tangles, the above formulas define an invariant in $C W(F L(T)) \rightarrow C W(T)$, "cyclic words in T ".

- Agrees with BN-Dancso [BND] and with [BN2]. • In-practice computable! - Vanishes on braids. • Extends to w. - Contains Alexander. • The "missing factor" in Levine's factorization [Le] (the rest of $[\overline{L e}]$ also fits, hence contains the MVA). • Related to / extends Farber's $[\mathrm{Fa}]$? • Should be summed and categorified.

References.

[Ar] V. I. Arnold, Topological Invariants of Plane Curves and Caustics, University Lecture Series 5, American Mathematical Society 1994.
[BN1] D. Bar-Natan, Bracelets and the Goussarov filtration of the space of knots, Invariants of knots and 3-manifolds (Kyoto 2001), Geometry and Topology Monographs 4 1-12, arXiv:math.GT/0111267.
[BN2] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, http://www.math.toronto.edu/~drorbn/papers/KBH/ arXiv:1308.1721.
[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of WKnotted Objects: From Alexander to Kashiwara and Vergne, http://www.math.toronto.edu/~drorbn/papers/WK0/.
[CKS] J. S. Carter, S. Kamada, and M. Saito, Diagrammatic Computations for Quandles and Cocycle Knot Invariants, Contemp. Math. 318 (2003) 51-74.
[CS] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs 55, American Mathematical Society, Providence 1998.
[Da] E. Dalvit, http://science.unitn.it/~dalvit/
[CR] A. S. Cattaneo and C. A. Rossi, Wilson Surfaces and Higher Dimensional Knot Invariants, Commun. in Math. Phys. 256-3 (2005) 513-537, arXiv:math-ph/0210037
[Fa] M. Farber, Noncommutative Rational Functions and Boundary Links, Math. Ann. 293 (1992) 543-568.
[Le] J. Levine, A Factorization of the Conway Polynomial, Comment. Math. Helv. 74 (1999) 27-53, arXiv:q-alg/9711007
[Ro] D. Roseman, Reidemeister-Type Moves for Surfaces in Four-Dimensional Space, Knot Theory, Banach Center Publications 42 (1998) 347-380.
[Wa] T. Watanabe, Configuration Space Integrals for Long n-Knots, the Alexander Polynomial and Knot Space Cohomology, Alg. and Geom. Top. 7 (2007) 47-92, arXiv:math/0609742
Continuing Joost Slingerland.

http://youtu.be/YCAOVIExVhge

 Sketch of Proof. In $4 D$ axial gauge, only "drop down" red propagators, hence in the ribbon case, no M-trivalent vertices. S integrals are ± 1 iff "ground pieces" run on nested curves as below, and exponentials arise when several propagators compete for the same double curve. And then the combinatorics is obvious...

Musings
Chern-Simons. When the domain of \bar{B} is restricted to ribbon knots, and the target of CS is restricted to trees and wheels, they agree. Why?
Is this all? What about the \vee-invariant? (the "true" triple linking number)

Gnots. In 3D, a generic immersion of S^{1} is an embedding, a knot. In 4D, a generic immersion of a surface has finitely-many double points (a gnot?). Perhaps we should be studying these?
 Finite type. What are finite-type invariants for 2-knots? What would be "chord diagrams"?

Bubble-wrap-finite-type.

There's an alternative definition of finite type in 3D, due to Goussarov (see [BN1]). The obvious parallel in 4D involves "bubble wraps". Is it any good?

Shielded tangles. In 3D, one can't zoom in and compute "the Chern-Simons invariant of a tangle". Yet there are well-defined invariants of "shielded tangles", and rules for their compositions.

What would the 4D analog be?

Will the relationship with the Kashiwara-Vergne problem [BND] necessarily arise here?
Plane curves. Shouldn't we understand integral / finite type invariants of plane curves, in the style of Arnold's J^{+}, J^{-}, and $S t[\mathrm{Ar}]$, a bit better?

Arnold

"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified)
www.katlas.org

Safekeeping / Recycling.

