Abstract. I will describe a few 2-dimensional knots in 4 dimensional space in detail, then tell you how to make many more, then tell you that I don't really understand my way of making them, yet I can tell at least some of them apart in a colourful way. u-Knots.

$S^{1} \hookrightarrow \mathbb{R}_{x y z}^{3}$

'thermographical diagram'

2-Knots.

"the crossing"

The Double Inflation Procedure δ.

"Planar Algebra": The objects are "tiles" that can be composed in arbitrary planar
 ways to make bigger tiles, which can then be composed even further.

Satoh's Conjecture. (ω /Sat) The "kernel" of the double inflation map δ, mapping w-knot diagrams
 in the plane to knotted 2D tubes and spheres in 4D, is precisely the moves R2-3, VR1-3, M, CP and OC listed above. In other words, two w-knot diagrams represent via δ the same 2D knot in 4D iff they differ by a sequence of the said moves.

First Isomorphism Thm: $\delta: G \rightarrow H \Rightarrow \operatorname{im} \delta \cong G / \operatorname{ker}(\delta)$ δ is a map from algebra to topology. So a thing in "hard" topology (im δ) is the same as a thing in "easy" algebra ($w \mathcal{K}$).

$$
\begin{aligned}
& \text { Reidemeister's Theorem. } \\
& u \mathcal{K}:=\mathrm{PA}\langle/ \) /
\end{aligned}
$$

Proof by a genericity / "shaking" argument
Kurt Reidemeister
3-Colourings. Colour the arcs of a broken arc diagram in RGB so that every crossing is either mono-chromatic or tri-
 chromatic; $\lambda(K):=\mid\{3$-colourings $\} \mid$. Example. $\lambda(\bigcirc)=3$ while $\lambda(\mathcal{S})=9$; so $\bigcirc \neq \mathcal{G}$. Exercise. Show that the set of colourings of K is a vector space over \mathbb{F}_{3} hence $\lambda(K)$ is always a power of 3 .
Extend λ to $w \mathcal{K}$ by declaring that arcs "don't see" v-xings, and that caps are always "kosher". Then $\lambda(\bullet \bullet)=3 \neq$ $9=\lambda$ (CS 2-knot), so assuming Conjecture, the CS 2-knot is indeed knotted.

Expansions. Given a "ring" K and an ideal $I \subset K$, set $A:=I^{0} / I^{1} \oplus I^{1} / I^{2} \oplus I^{2} / I^{3} \oplus \cdots$.
A homomorphic expansion is a multiplicative $Z: K \rightarrow A$ such that if $\gamma \in I^{m}$, then $Z(\gamma)=\left(0,0, \ldots, 0, \gamma / I^{m+1}, *, *, \ldots\right)$.
Example. Let $K=C^{\infty}\left(\mathbb{R}^{n}\right)$ be smooth functions on \mathbb{R}^{n}, and $I:=\{f \in K: f(0)=0\}$. Then $I^{m}=\left\{f: f\right.$ vanishes as $\left.|x|^{m}\right\}$ and I^{m} / I^{m+1} is \{homogeneous polynomials of degree $\left.m\right\}$ and A is the set of power series. So Z is "a Taylor expansion".
Hence Taylor expansions are vastly general; even knots can be Taylor expanded!

