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Abstract.| will describe a few 2-dimensional knots in 4 dimei®atoh’s Conjecture.(w/Sat) The “kernel” of th ;
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,the plane to knotted 2D tubes and spheresin
is precisely the moves R2-3, VR1-3, M, CP and OC listed a
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Tn other words, two w-knot diagrams represent&ithe same 2

knot in 4D iff they difer by a sequence of the said moves.
First Isomorphism Thmé: G - H = im¢ = G/ ker(y)

¢ is a map from algebra to topology. So a thing in “hard” topy

(im6) is the same as a thing in “easy” algebwak).
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2-Knots.
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Reidemeister’s Theorem. .
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Proof by a genericity “shaking” argument

Kurt Reidemeister

3-Colourings. Colour the arcs of a brox
ken arc diagram irRGB so that every/\
crossing is either mono-chromatic or tflyoo4 “good ~ bad
chromatic;A(K) := |[{3-colouring$.

Example.A(O) = 3 while (&) = 9; soO # &. &2

[Exercise. Show that the set of colourings &f is a vector spac
overFsz hencel(K) is always a power of 3.
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The Generators
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The Double Inflation Procedure

Extend A to wK by declaring that arcs
‘don’t see” v-xings, and that caps are>< >< T T

always “kosher”. Them(e—) = 3 #
()

9 = A(CS 2-knot), so assuming Conjec-
ture, the CS 2-knot is indeed knotted.
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The objects are “tiles” |
that can be composed |
in arbitrary planar :
ways to make bigger tiles, which can thbn
be composed even further. ... w

ExpansionsGiven a “ring”K and an ideal c K, set
A=1%1ta 11?0 1%/1% - -

A homomorphic expansion is a multiplicatide K — A such tha

if y € 1™ thenZ(y) = (0,0,...,0,y/1™ « %, ..).

Example. Let K C*(R") be smooth functions oR", anc

| == {f € K: f(0) = 0}. Thenl™ = {f: f vanishes a™} anc

L=t “God created the knots, all else in
" | topology is the work of mortals.”

Leopold Kronecker (modified)

www.katlas.org| Ttekne dils

Hence Taylor expansions are vastly general; euents can b
Taylor expanded!

I™/1™1 is {homogeneous polynomials of degragand A is the
‘set of power series. Sois “a Taylor expansion”.
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