Scott Aaronson: Quantum Complexity and Quantum Optics

December-30-13 2:37 AM

See also http://quantumrio.wordpress.com/ , problem sets at
https://www.dropbox.com/sh/cazr7ep5n6f14ya/eCaZnKXX1B
1. ECT & complexity
2. Linear Optics & Boson Sampling. 3. Post selection KLM, Approximate Boson Sampling. (KLM: Knifl, Laffmme, Millown, http://arxiv.org/abs/quantph/00060
3. Post selection KLM, Approximate Boson
SAMIMAG. (KLM·KNIK, Lafflumne, Millsum) http://arxiv.org/abs/quantph/00060
4. Scalability & Verification of Boson sampling devices.
Twing Machine
The Physical Church-Thesis: Anything that can be physically computed can be computed by a Turing machine.
Beyond Turing:
1. "Zeno Computer" - fails as at 10^43 Hz the energy needed to cool the computer will turn it into a
black hole. 2. "Special Relativity Computer" - will need an exponential amount of energy to accelerate.
A definition of the class "P".
ECT: "Extended Church-Turing Thesis": P is always the same, and the physical P is the CS P.
A definition of "NP". $P = NPZ$ Conjective: $P \neq NP$.
Det L is "NP hard" it NPCPL
p up oracle for L.
DOF Lis is "NP-complete" if it is NN-bod
& in NP.
PENPEPSPACEE EXP

	Conj: All inclusions are strict.
	Thn: PFEXP.
_	Lecture II
	A difference between factorization & all known NP-complete problem: In factorization here is
	uniqueness of solutions.
	Chim FuctoriantionE NP (CO-NP).
	Chim If $\exists L \in NP \cap (co-NP)$ s.t. L is NP complete, then $NP = Co-NP$.
	But, conjecture NP+ coNP.
	The 'phynomial Hierarchy' (PH) Oth level: P St lovel: NP, CONP 2nd level: NPNP, CONPNP 3rd level: NP(NPNP) This is non-degenerate. This viol: NP(NPNP) HC. http://en.wikipedia.org/wiki/Polynomial hierarchy This Whole hierarchy is Contained in P-SPace. The If graph isomorphism is NP-complete, Then If graph isomorphism is NP-complete,
,	#P: count # of solns of P problems.
	Example The matching problem in a bi-partitle gaph is P, yet the corresponding counting policy is #P-complete.
	<u> </u>

Per(A) = Z T/ aioti) for the V-V adjacery metrix of a bipetite graph, les counts metabings, so per is #P - complete. NPE PH = p ^{#P} c PSPACE Toda 1991 PH c p ^{#P} BPP: Bounded-error Prohibitistic Pdy time: The class of all Lefo, pf* st. 7 poly-time Twing medica st. mulmostry uniform * XEL = P P[M(x,r) accepts] > 2 * X & L = P P[M(x,r) accepts] > 2 The only needed property of x = 1 kp=2 is 0<< <p>PP: Some as BPP, but with x=p. Chila p=BPP = PIC p^{#P}C PSPACE BPP CNP unknown. Than (sipstor) BPPC NPNP NP CBPP whenam Than NICBPP = PH = NPNP</p>	Le permanent of a matrix A.
IS #P - complete. NPE PHEP#C PSPACE Toda 1991 PHC P#P BPP: Bounded-error Probabilistic Polytime: The choss of all LC 60, 13 st. I poly-time Twing makine s.t. mountain unitorman * XEL => P[M(X,r) accepts] > \frac{1}{3} * X & L => P[M(X,r) accepts] < \frac{1}{3} [The only needed property of <= \frac{1}{3} \lambda p=\frac{2}{3} is O << \p> PP: Same as BPP, but with <= \frac{1}{3} Chila p=BPP = PIC p#PC PSPACE BPP CNP unknum. Than (sipstor) BPPC NPNP 0	· · · · · · · · · · · · · · · · · · ·
IS #P - complete. NPE PHEP#C PSPACE Toda 1991 PHC P#P BPP: Bounded-error Probabilistic Polytime: The choss of all LC 60, 13 st. I poly-time Twing makine s.t. mountain unitorman * XEL => P[M(X,r) accepts] > \frac{1}{3} * X & L => P[M(X,r) accepts] < \frac{1}{3} [The only needed property of <= \frac{1}{3} \lambda p=\frac{2}{3} is O << \p> PP: Same as BPP, but with <= \frac{1}{3} Chila p=BPP = PIC p#PC PSPACE BPP CNP unknum. Than (sipstor) BPPC NPNP 0	For the V-V adjacery metrix of a bijertite graph, la counts matchings, so per
Toda 1991 PHCP#P BPP: Bounded-error Probabilistic Polytime: The class of all L=80,13* St. I polytime Twing machine s.t. mormating uniform leaven * XEL => Pr[M(x,r) accepts] > 2 * X * L => pr[M(x,r) accepts] < 1 The only needed property of < 1 k p=2 15 0<<< p> PP: Same as BPP, but with <= p. Chila p=BPP= PIC p#PC pspace BPP CNP unknown. Thm (sipstor) BPPC NPNP 0	_
BPP: Bounded-error Prohabilistic Polytine: The class of all Lego, 13th S.t. I polytine Twing machine s.t. momenting uniterm I distribution, polytongth * XEL => Pr[M(x,r) accepts] > \frac{1}{3} * X & L => Pr[M(x,r) accepts] < \frac{1}{3} The only needed property of < \frac{1}{3} & \frac{1}{3} = \frac{1}{3} = 0 < < \frac{1}{3} < \frac{1}{3} PP: Same as BPP, but with <= \frac{1}{3}. Chila p=BPP=PIC p#PC PSPACE BPP CNP unknown. Than (sipstor) BPPC NPNP o	NPEPHEP#PCPSPACE
The class of all Lego, 13th S.t. I poly-time Turing machine s.t. motion string uniform # XEL => Pr[M(x,r) accepts] > \frac{1}{3} # X \(\) => Pr[M(x,r) accepts] < \frac{1}{3} [The only needed property of <=\frac{1}{3} \kap=\frac{2}{3} is O<<<\br/> PP: Same as BPP, but with <=\brace{\beta}. Claim pc BPP = PIC ptp c pspace BPP CNP unknown. Then (sipstor) BPPC NPNP o	Toda 1991 PHCP#P
Twing machine s.t. moon string uniform a distribut; n, poly length * XEL => Pr[M(X,r) accepts] > \frac{1}{3} * X \in L => pr[M(X,r) accepts] < \frac{1}{3} The only needed property of <=\frac{1}{3} kp=\frac{2}{3} is O<<<\p>(K) PP: Same as BPP, but with <=\beta. Chila pe BPP = PI < p \text{#PC PSPACE} BPP CNP unknown. Than (sipstar) BPPC NPNP o	BPP: Bounded-error Probabilistic Polytime:
* X & L =) pr[M(x,r) accepts] < \frac{1}{3} [The only needed property of <=\frac{1}{3} \kg=\frac{2}{3} is O<<<\g<\frac{1}{3} [PP: Same as BPP, but with <=\beta. [Child perperperperperperperperperperperperperp	·
* X & L =) pr[M(x,r) accepts] < \frac{1}{3} [The only needed property of <=\frac{1}{3} \kg=\frac{2}{3} is O<<<\g<\frac{1}{3} [PP: Same as BPP, but with <=\beta. [Child perperperperperperperperperperperperperp	Turing machine s.t. moon string unitorm L distribution, poly length
The only needed property of <= \(\frac{1}{3} \kp=\frac{2}{3} \land 1\) O<< <p>PP: Same as BPP, but with <= \beta.</p> Child perpense ple p#PC pspace BPP CNP unknown. Them (sipstor) BPPC NPNP 0	
PP: Same as BPP, but with $Z=\beta$. Chila perpeper prepter pspace BPP CNP unknown. Than (sipstor) BPPC NPNP o	
Chih perpeper per per per per per BPP C PSPACE BPP CNP unknown. Thm (sipstor) BPPC NPNP 0	The only needed property of $ <=\frac{1}{3} k \beta = \frac{7}{3} 15 0 < < \beta < \frac{7}{3} $
BPPCNP unknown. Thm (sipstor) BPPCNPNP 0	PP: Same as BPP, but with x=B.
Thm (sipster) BPPC NPNP 0	Chin perpeper per proprie
	BPPCNP unknown.
NPCBPP WKnown Thm NICBPP => PH = NPNP	
	NPCBPP WKnown Thm NICBPP => PH = NPNP

BOP The class of L < 20,13 * s.t. 7 classical Roly-time twing machine M s.t. VXELO, 17* Montputs a quantum circuit Cx s.t. XEL =) Cx accepts w/ 1005 >2/3 $x \notin L =) Cx$ 10) — Poly # 26 — 2ntput.
107 — 9 7tes dain PCBPPCBQPCPSPACECEXP The relationship between NP & BQP is unknown Conjecture P=BPPFBQP Follows from the existence of a good chough pseudo-random number generator