Dror Bar-Natan: Academic Pensieve: 2013-12: **Cheat Sheet Ševera Quantization**

Ševera's construction. (maintained at monoblog) Given a Braided Monoidal Category (BMC) \mathcal{D} (with Manin $(\partial, \mathfrak{g}, \mathfrak{g}^{\star})$, set $\mathcal{D} := \mathcal{U}(\partial) - \mathrm{Mod}^{\Phi})$, given a co-braided coalgebra $(M, \Delta: M \to M^2, \epsilon: M \to 1_{\mathcal{D}})$ $(M := \mathcal{U}(g) =$ $\mathcal{U}(\partial)/\mathcal{U}(\partial)g^*$, given a second BMC C (Vect), a functor $F: \mathcal{D} \to C$ (F(X) := X/gX) and a comonoidal structure c (namely a natural $c_{X,Y}$: $F(XY) \rightarrow F(X)F(Y)$ and $c_1: F(1_{\mathcal{D}}) \to 1_C$ respecting the braiding and associativity) such that

$$F(XMY) \xrightarrow{F(1\Delta 1)} F(XMMY) \xrightarrow{c_{XM,MY}} F(XM)F(MY)$$

and $F(M) \xrightarrow{F(\epsilon)} F(1_{\mathcal{D}}) \xrightarrow{c_1} 1_C$

are isomorphisms (the clear $c_{X,Y}$: XY/g(XY)(X/gX)(Y/gY), construct a Hopf algebra structure on

 $H \coloneqq F(M^2)$: $\Delta_H \colon F(M^2) \xrightarrow{F(\Delta\Delta)} F(M^4) \xrightarrow{F(1R1)} F(M^4) \xrightarrow{c_{M,M}} F(M^2)^2$ $F(M^2)^2 \xleftarrow{c_{M^2,M^2} \circ F(1\Delta 1)}{\thicksim} F(M^3) \xrightarrow{F(1\epsilon 1)} F(M^2),$ m_H :

 $S_H: F(M^2) \xrightarrow{F(R)} F(M^2).$ Set also $G: X \mapsto F(MX)$ ($G: X \mapsto \frac{\mathcal{U}(\mathfrak{g})X}{\mathfrak{g}(\mathcal{U}(\mathfrak{g})X)}$), "The Twist". **Questions.** • Is *H* the symmetry algebra of something? • In the non-quasi case, can we reconstruct $\mathcal{U}(g)$ from the category of ∂ -modules?

• In the abstract context, what is the relation between H and M?

• How does this restrict to AT/AET in the commutative case?

Tannakian reconstruction. (maintained at Confessions) — Given an algebra A let $\mathcal{D} \coloneqq A - Mod$ (projective (?) left A-modules), let C := Vect and $G : \mathcal{D} \to C$ be the forGetful functor. Then $A \simeq \text{End}(G)$ by

$$a \in A \mapsto \text{(the action of } a \text{ on any } X \in \mathcal{D}\text{)},$$

 $\{a_X \colon G(X) \to G(X)\}_{X \in \mathcal{D}} \mapsto a_A(1) \in A.$

— Given a monoidal \mathcal{D} and an exact $G: \mathcal{D} \to \mathcal{C} =:$ Vect with a natural isomorphism $\alpha_{X,Y}$: $G(X)G(Y) \rightarrow G(XY)$, there is a Hopf algebra structure on H := End(G): product is composition, coproduct $\Delta: H \to H^2 = \operatorname{End}(G^2: \mathcal{D} \times \mathcal{D} \to \mathcal{D})$ C) by

$$(h_X)_{X \in \mathcal{D}} \mapsto ((X, Y) \mapsto \alpha_{X,Y} // h_{XY} // \alpha_{X,Y}^{-1} \in \operatorname{End}(G(X)G(Y))).$$