Université de Genève

Section de mathématiques
A. Alekseev and P. Severa

Braids and Associators, problem set 7 - by Dror Bar-Natan

Online: http://drorbn.net/AcademicPensieve/2013-11/MZV_ex7.pdf.

1. Show that the Kontsevich/KZ integral $Z: P B_{n} \rightarrow \operatorname{gr} P B_{n}$ satisfies property U : for $D \in \mathcal{G}_{m} \mathcal{A}_{n}$, one has $(\operatorname{gr} Z)(\pi(D))=D$. You may take for granted that it is well defined - namely that it is invariant under deformations of geometrical braids.
2. Show that the Kontsevich/KZ integral is multiplicative.
3. Verify Arnold's identity: if $\omega_{i j}=\frac{d z_{i}-d z_{j}}{z_{i}-z_{j}}$, then $\omega_{12} \wedge \omega_{23}+\omega_{23} \wedge$ $\omega_{31}+\omega_{31} \wedge \omega_{12}=0$. (This will be used within the proof of the invariance of $Z)$.
4. Recall from the last assignment (exercise 3) that there is a naturallydefined "co-product" map $\Delta_{A_{n}}: A_{n} \rightarrow A_{n} \otimes A_{n}$, where $A_{n}=\operatorname{gr} \mathbb{Q} P B_{n}$.
(i) Describe $\Delta_{A_{n}}$ explicitly; in particular, demonstrate that you know how to compute $\Delta_{A_{n}}$ by computing $\Delta_{A_{n}}\left(t^{12} t^{13} t^{23}\right)$.
(ii) Show that the Kontsevich/KZ integral is co-homomorphic in the sense of the last assignment.
